Face Detection Using Multiple Cues

  • Thomas B. Moeslund
  • Jess S. Petersen
  • Lasse D. Skalski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Many potential applications exist where a fast and robust detection of human faces is required. Different cues can be used for this purpose. Since each cue has its own pros and cons we, in this paper, suggest to combine several complimentary cues in order to gain more robustness in face detection. Concretely, we apply skin-color, shape, and texture to build a robust detector. We define the face detection problem in a state-space spanned by position, scale, and rotation. The state-space is searched using a Particle Filter where 80% of the particles are predicted from the past frame, 10% are chosen randomly and 10% are from a texture-based detector. The likelihood of each selected particle is evaluated using the skin-color and shape cues. We evaluate the different cues separately as well as in combination. An improvement in both detection rates and false positives is obtained when combining them.


  1. 1.
    Azoz, Y., Devi, L., Yeasin, M., Sharma, R.: Tracking the Human Arm Using Constraint Fusion and Multiple-Cue Localization. Machine Vision and Applications 13(5-6), 286–302 (2003)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm. IEEE Transaction on Pattern Analysis and Machine Intelligence 10(6), 849–865 (1988)CrossRefGoogle Scholar
  3. 3.
    Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)CrossRefGoogle Scholar
  4. 4.
    Davis, L., Philomin, V., Duraiswami, R.: Tracking Humans from a Moving Platform. In: International Conference on Pattern Recognition, Barcelona, Spain, September 3-8 (2000)Google Scholar
  5. 5.
    Deutscher, J., Reid, I.: Articulated Body Motion Capture by Stochastic Search. International Journal of Computer Vision 61(2), 185–205 (2005)CrossRefGoogle Scholar
  6. 6.
    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face Detection in Color Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)CrossRefGoogle Scholar
  7. 7.
    Hu, W., Hu, M., Zhou, X., Tan, T., Lou, J., Maybank, S.: Principal Axis-Based Correspondence between Multiple Cameras for People Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 663–671 (2006)CrossRefGoogle Scholar
  8. 8.
    Kovac, J., Peer, P., Solina, F.: 2D Versus 3D Colour Space Face Detection. In: EURASIP Conference on Video / Image Processing and Multimedia Communications, EC-VIP-MC’03, Zagreb, Croatia, July 2-5 (2003)Google Scholar
  9. 9.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic Interpretation and Coding of Face Images Using Flexible Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 743–756 (1997)CrossRefGoogle Scholar
  10. 10.
    Kriegman, D.J., Yang, M.H., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar
  11. 11.
    Moeslund, T.B., Hilton, A., Kruger, V.: A Survey of Advances in Vision-Based Human Motion Capture and Analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)CrossRefGoogle Scholar
  12. 12.
    NASA - National Aeronautics and Space Administration. Anthropometry and Biomechanics (2006),
  13. 13.
    Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Castrillón-Santana, M., Déniz-Suárez, O., Guerra-Artal, C., Isern-González, J.: Cue Combination for Robust Real-Time Multiple Face Detection at Different Resolutions. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 398–403. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Stenger, B.: Template-Based Hand Pose Recognition Using Multiple Cues. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 551–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: Computer Vision and Pattern Recognition, Kauai Marriott, Hawaii, December 9-14 (2001)Google Scholar
  17. 17.
    Wu, J., Pedersen, J.M., Putthividhya, P., Norgaard, D., Trivedi, M.M.: A Two-level Pose Estimation Framework Using Majority Voting of Gabor Wavelets and Bunch Graph Analysis. In: ICPR workshop on Visual Observation of Deictic Gestures, Cambridge, UK, August 22 (2004)Google Scholar
  18. 18.
    Zhao, T., Nevatia, R.: Stochastic Human Segmentation from a Static Camera. In: MOTION ’02: Proceedings of the Workshop on Motion and Video Computing, Orlando, Florida, USA, December 5-6 (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Thomas B. Moeslund
    • 1
  • Jess S. Petersen
    • 1
  • Lasse D. Skalski
    • 1
  1. 1.Laboratory of Computer Vision and Media Technology, Aalborg UniversityDenmark

Personalised recommendations