Advertisement

Boneless Pose Editing and Animation

  • J. Andreas Bærentzen
  • Kristian Evers Hansen
  • Kenny Erleben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

In this paper, we propose a pose editing and animation method for triangulated surfaces based on a user controlled partitioning of the model into deformable parts and rigid parts which are denoted handles. In our pose editing system, the user can sculpt a set of poses simply by transforming the handles for each pose. Using Laplacian editing, the deformable parts are deformed to match the handles. In our animation system the user can constrain one or several handles in order to define a new pose. New poses are interpolated from the examples poses, by solving a small non-linear optimization problem in order to obtain the interpolation weights. While the system can be used simply for building poses, it is also an animation system. The user can specify a path for a given constraint and the model is animated correspondingly.

Keywords

Inverse Kinematic Vertex Position Triangulate Surface Inverse Kinematic Problem Constraint Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wellman, C.: Inverse kinematics and geometric constraints for articulated figure manipulation. Master’s thesis, Simon Fraser University (1993)Google Scholar
  2. 2.
    Fernando, R., Kilgard, M.J.: The Cg Tutorial, The Definitive Guide to Prgrammable Real-Time Graphics. Addison-Wesley, Reading (2003)Google Scholar
  3. 3.
    Kavan, L., Zara, J.: Spherical blend skinning: a real-time deformation of articulated models. In: SI3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics and games, Washington, District of Columbia, pp. 9–16. ACM Press, New York (2005), doi:10.1145/1053427.1053429CrossRefGoogle Scholar
  4. 4.
    Kry, P.G., James, D.L., Pai, D.K.: Eigenskin: real time large deformation character skinning in hardware. In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, San Antonio, Texas, pp. 153–159. ACM Press, New York (2002), doi:10.1145/545261.545286CrossRefGoogle Scholar
  5. 5.
    Mohr, A., Gleicher, M.: Building efficient, accurate character skins from examples. ACM Trans. Graph. 22(3), 562–568 (2003), doi:10.1145/882262.882308CrossRefGoogle Scholar
  6. 6.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 165–172. ACM Press, New York (2000), doi:10.1145/344779.344862CrossRefGoogle Scholar
  7. 7.
    Sorkine, O.: Differential representations for mesh processing. Computer Graphics Forum 25(4) (2006)Google Scholar
  8. 8.
    Maciejewski, A.A.: Motion simulation: Dealing with the ill-conditioned equations of motion for articulated figures. IEEE Comput. Graph. Appl. 10(3), 63–71 (1990), doi:10.1109/38.55154CrossRefGoogle Scholar
  9. 9.
    Grochow, K., Martin, S.L., Hertzmann, A.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004), doi:10.1145/1015706.1015755CrossRefGoogle Scholar
  10. 10.
    Sumner, R.W., Zwicker, M., Gotsman, C.: Mesh-based inverse kinematics. ACM Trans. Graph. 24(3), 488–495 (2005), doi:10.1145/1073204.1073218CrossRefGoogle Scholar
  11. 11.
    Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M.: Laplacian surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Nice, France, pp. 179–188. ACM Press, New York (2004)Google Scholar
  12. 12.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. In: Proceedings of ACM SIGGRAPH 2005, Los Angeles, California, USA, pp. 479–487. ACM Press, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Shape Modeling International 2004 (2004)Google Scholar
  14. 14.
    Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh processing. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604, pp. 62–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Alexa, M.: Linear combination of transformations. ACM Trans. Graph. 21(3), 380–387 (2002), doi:10.1145/566654.566592CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. Journal of the ACM 8, 212–229 (1961)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • J. Andreas Bærentzen
    • 1
  • Kristian Evers Hansen
    • 2
  • Kenny Erleben
    • 3
  1. 1.Informatics and Mathematical Modelling, Technical University of Denmark 
  2. 2.3Shape 
  3. 3.Computer Science, University of Copenhagen 

Personalised recommendations