GPU-Based Edge-Directed Image Interpolation

  • Martin Kraus
  • Mike Eissele
  • Magnus Strengert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


The rendering of lower resolution image data on higher resolution displays has become a very common task, in particular because of the increasing popularity of webcams, camera phones, and low-bandwidth video streaming. Thus, there is a strong demand for real-time, high-quality image magnification. In this work, we suggest to exploit the high performance of programmable graphics processing units (GPUs) for an adaptive image magnification method. To this end, we propose a GPU-friendly algorithm for image up-sampling by edge-directed image interpolation, which avoids ringing artifacts, excessive blurring, and staircasing of oblique edges. At the same time it features gray-scale invariance, is applicable to color images, and allows for real-time processing of full-screen images on today’s GPUs.


Subdivision Scheme Camera Phone Image Interpolation Ideal Edge Edge Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhao, M., de Haan, G.: Content adaptive video up-scaling. In: Proceedings ASCI 2003, pp. 151–156 (2003)Google Scholar
  2. 2.
    Strengert, M., Kraus, M., Ertl, T.: Pyramid methods in gpu-based image processing. In: Proceedings Vision, Modeling, and Visualization 2006, pp. 169–176 (2006)Google Scholar
  3. 3.
    Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing 14(10), 1647–1659 (2005)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Transactions on Image Processing 10(10), 1521–1527 (2001)CrossRefGoogle Scholar
  5. 5.
    Atkins, C., Bouman, C., Allebach, J.: Optimal image scaling using pixel classification. In: 2001 International Conference on Image Processing, vol. 3, pp. 864–867 (2001)Google Scholar
  6. 6.
    Kondo, T., Node, Y., Fujiwara, T., Okumura, Y.: Picture conversion apparatus, picture conversion method, learning apparatus and learning method. US-patent 6,323,905 (2001)Google Scholar
  7. 7.
    Pietikäinen, M.: Image Analysis with Local Binary Patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Hwang, J.W., Lee, H.S.: Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters 11(3), 359–362 (2004)CrossRefGoogle Scholar
  9. 9.
    Wang, Q., Ward, R.K.: A new edge-directed image expansion scheme. In: ICIP, vol. 3, pp. 899–902 (2001)Google Scholar
  10. 10.
    Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings 1998 IEEE Symposium on Volume Visualization, pp. 79–86. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  11. 11.
    Canny, J.F.: A computational approach to edge detection. In: Readings in computer vision: issues, problems, principles, and paradigms, pp. 184–203. Morgan Kaufmann, San Francisco (1987)Google Scholar
  12. 12.
    Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of the Royal Society of London, Series B, Biological Sciences 207(1167), 187–217 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Kraus
    • 1
  • Mike Eissele
    • 2
  • Magnus Strengert
    • 2
  1. 1.Computer Graphics and Visualization Group, Informatik 15, Technische Universität München, Boltzmannstraße 3, 85748 GarchingGermany
  2. 2.Visualization and Interactive Systems Group, Institut VIS, Universität Stuttgart, Universitätsstraße 38, 70569 StuttgartGermany

Personalised recommendations