Advertisement

Real-Time Face Detection Using Illumination Invariant Features

  • Klaus Kollreider
  • Hartwig Fronthaler
  • Josef Bigun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

A robust object/face detection technique processing every frame in real-time (video-rate) is presented. A methodological novelty are the suggested quantized angle features (“quangles”), being designed for illumination invariance without the need for pre-processing, e.g. histogram equalization. This is achieved by using both the gradient direction and the double angle direction (the structure tensor angle), and by ignoring the magnitude of the gradient. Boosting techniques are applied in a quantized feature space. Separable filtering and the use of lookup tables favor the detection speed. Furthermore, the gradient may then be reused for other tasks as well. A side effect is that the training of effective cascaded classifiers is feasible in very short time, less than 1 hour for data sets of order 104. We present favorable results on face detection, for several public databases (e.g. 93% Detection Rate at 1×10− 6 False Positive Rate on the CMU-MIT frontal face test set).

Keywords

Object detection Face Detection Biometrics Direction Field Orientation Tensor Quantized Angles Quangles AdaBoost 

References

  1. 1.
    Yang, M.H., Kriegman, D., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE-PAMI 24(1), 34–58 (2002)Google Scholar
  2. 2.
    Hamouz, M., Kittler, J., Kamarainen, J., Paalanen, P., Kalviainen, H., Matas, J.: Feature-Based Affine-Invariant Localization of Faces. PAMI 27(9), 1490–1495 (2005)Google Scholar
  3. 3.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  4. 4.
    Sung, K.K., Poggio, T.: Example Based Learning for View-Based Human Face Detection. Technical report, Cambridge, MA, USA (1994)Google Scholar
  5. 5.
    Rowley, H., Baluja, S., Kanade, T.: Human Face Detection in Visual Scenes. Advances in Neural Information Processing Systems 8, 875–881 (1996)Google Scholar
  6. 6.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  7. 7.
    Osuna, E., Freund, R., Girosi, F.: Training Support Vector Machines: an Application to Face Detection. In: IEEE Conference on Computer Vision and Pattern Recognition (1997)Google Scholar
  8. 8.
    Schneiderman, H., Kanade, T.: Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition. In: CVPR 98, p. 45 (1998)Google Scholar
  9. 9.
    Nguyen, D., Halupka, D., Aarabi, P., Sheikholeslami, A.: Real-Time Face Detection and Lip Feature Extraction Using Field-Programmable Gate Arrays. SMCB 36(4), 902–912 (2006)Google Scholar
  10. 10.
    Freund, Y., Shapire, R.E.: A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences 5(1), 119–139 (1997)CrossRefGoogle Scholar
  11. 11.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features (2001)Google Scholar
  12. 12.
    Fröba, B., Külbeck, C.: Real-Time Face Detection Using Edge-Orientation Matching. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 78–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Li, S.Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H., Shum, H.-Y.: Statistical Learning of Multi-view Face Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 67–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Sochman, J., Matas, J.: WaldBoost Learning for Time Constrained Sequential Detection. In: CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, Washington, DC, USA, pp. 150–156. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  15. 15.
    Hadid, A., Pietikäinen, M., Ahonen, T.: A Discriminative Feature Space for Detecting and Recognizing Faces. In: CVPR, vol. 2, pp. 797–804 (2004)Google Scholar
  16. 16.
    Bigun, J.: Vision with Direction. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  17. 17.
    Kollreider, K., Fronthaler, H., Bigun, J.: Evaluating Liveness by Face Images and the Structure Tensor. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, AutoID 2005, Buffalo, New York, pp. 75–80 (2005)Google Scholar
  18. 18.
    Smeraldi, F., Bigun, J.: Retinal vision applied to facial features detection and face authentication. Pattern Recognition Letters 23, 463–475 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. PAMI (Special Issue on Face Recognition) 19(7), 711–720 (1997)Google Scholar
  20. 20.
    Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of Fourier spectra. In: Biometric Technology for Human Identification. SPIE, vol. 5404, pp. 296–303 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Klaus Kollreider
    • 1
  • Hartwig Fronthaler
    • 1
  • Josef Bigun
    • 1
  1. 1.Halmstad University, Box 823, SE-30118, HalmstadSweden

Personalised recommendations