Line-Stepping for Shell Meshes

  • Kenny Erleben
  • Jon Sporring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

This paper presents a new method for creating a thick shell tetrahedral mesh from a triangular surface mesh. Our main goal is to create the thickest possible shell mesh with the lowest possible number of tetrahedrons.

Low count tetrahedral meshes is desirable for animating deformable objects where accuracy is less important and to produce shell maps and signed distance fields. In this work we propose to improve convergence rate of past work.

Keywords

Directional Derivative Signed Distance Medial Surface Surface Mesh Medial Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mantyla, M.: Introduction to Solid Modeling. W.H. Freeman & Co., New York (1988)Google Scholar
  2. 2.
    Botsch, M., Steinberg, S., Bischoff, S., Kobbelt, L.: Openmesh–a generic and efficient polygon mesh data structure. In: Proc. Open SG Symposium (2002)Google Scholar
  3. 3.
    Molino, N., Bridson, R., Teran, J., Fedkiw, R.: Adaptive physics based tetrahedral mesh generation using level sets (in review) (2004)Google Scholar
  4. 4.
    Diatta, A., Giblin, P.J.: Pre-symmetry Sets of 3D Shapes. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 36–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable M-Reps for 3D Medical Image Segmentation. International Journal of Computer Vision 55(2-3), 85–106 (2003)CrossRefGoogle Scholar
  6. 6.
    Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps. ACM Trans. Graph. 24(3), 626–633 (2005), doi:10.1145/1073204.1073239CrossRefGoogle Scholar
  7. 7.
    Erleben, K., Dohlmann, H.: Scan conversion of signed distance fields. In: Olsen, S.I. (ed.) Proceedings of DSAGM, pp. 81–91 (2006)Google Scholar
  8. 8.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  9. 9.
    Erleben, K., Dohlmann, H.: The thin shell tetrahedral mesh. In: Proceedings of DSAGM, August 2004, pp. 94–102 (2004)Google Scholar
  10. 10.
    Erleben, K., Dohlmann, H., Sporring, J.: The adaptive thin shell tetrahedral mesh. Journal of WSCG, 17–24 (2005)Google Scholar
  11. 11.
    Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a polyhedron. Technical Report TR98-034, University of North Carolina, Chapel Hill (1998)Google Scholar
  12. 12.
    Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree construction. ACM Transactions on Graphics 23(1) (2004)Google Scholar
  13. 13.
    Bouix, S., Siddiqi, K.: Divergence-Based Medial Surfaces. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 603–618. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Dimitrov, P., Damon, J.N., Siddiqi, K.: Flux invariants for shape. In: CVPR, vol. 1, pp. 835–841 (2003)Google Scholar
  15. 15.
    Baerentzen, J.A., Aanaes, H.: Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11(3), 243–253 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Kenny Erleben
    • 1
  • Jon Sporring
    • 1
  1. 1.Department of Computer Science, University of CopenhagenDenmark

Personalised recommendations