FyFont: Find-your-Font in Large Font Databases

  • Martin Solli
  • Reiner Lenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


A search engine for font recognition in very large font data-bases is presented and evaluated. The search engine analyzes an image of a text line, and responds with the name of the font used when writing the text. After segmenting the input image into single characters, the recognition is mainly based on eigenimages calculated from edge filtered character images. We evaluate the system with printed and scanned text lines and character images. The database used contains 2763 different fonts from the English alphabet. Our evaluation shows that for 99.8 % of the queries, the correct font name is one of the five best matches. Apart from finding fonts in large databases, the search engine can also be used as a pre-processor for Optical Character Recognition.


Search Engine Input Image Query Image Search Performance Document Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  2. 2.
    Sexton, A., Todman, A., Woodward, K.: Font recognition using shape-based quad-tree and kd-tree decomposition. In: JCIS 2000, vol. 2, pp. 212–215 (2000)Google Scholar
  3. 3.
    Östürk, S., Sankur, B., Abak, A.T.: Font clustering and cluster identification in document images. Journal of Electronic Imaging 10(2), 418–430 (2001)CrossRefGoogle Scholar
  4. 4.
    Morris, R.A.: Classification of digital typefaces using spectral signatures. Pattern Recognition 25(8), 869–876 (1992)CrossRefGoogle Scholar
  5. 5.
    Baird, H.S., Nagy, G.: Self-correcting 100-font classifier. Proceedings of SPIE 2181, 106–115 (1994)CrossRefGoogle Scholar
  6. 6.
    Cooperman, R.: Producing good font attribute determination using error-prone information. Proceedings of SPIE 3027, 50–57 (1997)CrossRefGoogle Scholar
  7. 7.
    Jung, M., Shin, Y., Srihari, S.: Multifont classification using typographical attributes. In: ICDAR ’99, p. 353. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  8. 8.
    Lee, C.-W., Jung, K.: NMF-Based Approach to Font Classification of Printed English Alphabets for Document Image Understanding. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 354–364. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Khoubyari, S., Hull, J.J.: Font and function word identification in document recognition. Computer Vision and Image Understanding 63(1), 66–74 (1996)CrossRefGoogle Scholar
  10. 10.
    Shi, H., Pavlidis, T.: Font recognition and contextual processing for more accurate text recognition. In: ICDAR ’97, pp. 39–44. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  11. 11.
    Zhu, Y., Tan, T.N., Wang, Y.H.: Font recognition based on global texture analysis. IEEE T-PAMI 23(10), 1192–1200 (2001)Google Scholar
  12. 12.
    Ha, M.H., Tian, X.D., Zhang, Z.R.: Optical font recognition based on Gabor filter. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.) ICMLC 2005. LNCS (LNAI), vol. 3930, pp. 1005–1013. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Yang, F., Tian, X.D., Guo, B.L.: An improved font recognition method based on texture analysis. In: Proc. 1st Int. Conf. on Machine Learning and Cybernetics (2002)Google Scholar
  14. 14.
    Avilés-Cruz, C., Rangel-Kuoppa, R., Reyes-Ayala, M., Andrade-Gonzalez, A., Escarela-Perez, R.: High-order statistical texture analysisfont recognition applied. Pattern Recognition Letters 26(2), 135–145 (2005)CrossRefGoogle Scholar
  15. 15.
    Casey, R.G., Lecolinet, E.: A survey of methods and strategies in character segmentation. IEEE T-PAMI 18(7), 690–706 (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Solli
    • 1
  • Reiner Lenz
    • 1
  1. 1.Dept. Sci & Tech., Linköping University, 601 74 NorrköpingSweden

Personalised recommendations