Accurate Spatial Neighborhood Relationships for Arbitrarily-Shaped Objects Using Hamilton-Jacobi GVD

  • Sumit K. Nath
  • Kannappan Palaniappan
  • Filiz Bunyak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

Many image segmentation approaches rely upon or are enhanced by using spatial relationship information between image regions and their object correspondences. Spatial relationships are usually captured in terms of relative neighborhood graphs such as the Delaunay graph. Neighborhood graphs capture information about which objects are close to each other in the plane or in space but may not capture complete spatial relationships such as containment or holes. Additionally, the typical approach used to compute the Delaunay graph (or its dual, the Voronoi polytopes) is based on using only the point-based (i.e., centroid) representation of each object. This can lead to incorrect spatial neighborhood graphs for sized objects with complex topology, eventually resulting in poor segmentation. This paper proposes a new algorithm for efficiently, and accurately extracting accurate neighborhood graphs in linear time by computing the Hamilton-Jacobi generalized Voronoi diagram (GVD) using the exact Euclidean-distance transform with Laplacian-of-Gaussian, and morphological operators. The algorithm is validated using synthetic, and real biological imagery of epithelial cells.

Keywords

Voronoi Diagram Neighborhood Graph Neighborhood Relationship Cell Segmentation Connected Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, Chichester (2000)MATHGoogle Scholar
  2. 2.
    Nath, S.K., Palaniappan, K., Bunyak, F.: Cell Segmentation Using Coupled Level Sets and Graph-Vertex Coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Nath, S.K., Bunyak, F., Palaniappan, K.: Robust Tracking of Migrating Cells Using Four-Color Level Set Segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 920–932. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Keenan, S., Diamond, J., McCluggage, W., Bharucha, H., Thompson, D., Bartels, P., Hamilton, P.: An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN). J. Pathol. 192(3), 351–362 (2000)CrossRefGoogle Scholar
  5. 5.
    Vincent, L., Masters, B.: Morphological image processing and network analysis of cornea endothelial cell images. In: Image Algebra Morph. Image Proc. III, San Diego, CA. Proc. SPIE, vol. 1769, pp. 212–226 (1992)Google Scholar
  6. 6.
    Choset, H., Walker, S., Ard, K., Burdick, J.: Sensor-based exploration: Incremental construction of the hierarchical generalized voronoi graph. I. Journ. Robotics Res. 19(2), 126–148 (2000)CrossRefGoogle Scholar
  7. 7.
    Aurenhammer, F.: Voronoi diagrams - A survey of a fundamental geometric data structure. ACM Comp. Surveys 23(3), 345–405 (1991)CrossRefGoogle Scholar
  8. 8.
    Sugihara, K.: Approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams. Com. Vis. Graph. Image Process. 55, 522–531 (1993)CrossRefGoogle Scholar
  9. 9.
    Vincent, L.: Graphs and mathematical morphology. Sig. Proc. 16, 365–388 (1989)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lu, Y., Tan, C.: Constructing area Voronoi diagram in document images. In: Proc. 8th IEEE Int. Conf. Doc. Anal. Recog., pp. 342–346. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  11. 11.
    Hoff III., K., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized voronoi diagrams using graphics hardware. In: SIGGRAPH-99: Proc. 26th Ann. Conf. Comp. Graphics Inter. Tech., pp. 277–286. ACM Press, New York (1999)CrossRefGoogle Scholar
  12. 12.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48, 215–231 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Felzenswalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Technical Report TR2004-1963, Dept. of Comp. Sci., Cornell University, Ithaca, NY (2004)Google Scholar
  14. 14.
    Rosenfeld, A.: A characterization of parallel thinning algorithms. Inform. Control 29, 286–291 (1975)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Cychosz, J.: Efficient binary image thinning using neighborhood maps. In: Graphics gems IV, pp. 465–473. Academic Press Professional, Inc., San Diego (1994)Google Scholar
  16. 16.
    Lam, L., Lee, S., Suen, C.Y.: Thinning methodologies-A comprehensive survey. IEEE Trans. Patt. Anal. Machine Intel. 14, 869–885 (1992)CrossRefGoogle Scholar
  17. 17.
    Bunyak, F., Palaniappan, K., Nath, S.K., Baskin, T.I., Dong, G.: Quantitive cell motility for in vitro wound healing using level set-based active contour tracking. In: Proc. 3rd IEEE Int. Symp. Biomed. Imaging (ISBI), Arlington, VA, pp. 1040–1043. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  18. 18.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, New York (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Sumit K. Nath
    • 1
  • Kannappan Palaniappan
    • 1
  • Filiz Bunyak
    • 1
  1. 1.MCVL, Department of Computer Science, University of Missouri-Columbia, MOUSA

Personalised recommendations