Scale-Space Texture Classification Using Combined Classifiers

  • Mehrdad J. Gangeh
  • Bart M. ter Haar Romeny
  • C. Eswaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Since texture is scale dependent, multi-scale techniques are quite useful for texture classification. Scale-space theory introduces multi-scale differential operators. In this paper, the N-jet of derivatives up to the second order at different scales is calculated for the textures in Brodatz album to generate the textures in multiple scales. After some preprocessing and feature extraction using principal component analysis (PCA), instead of combining features obtained from different scales/derivatives to construct a combined feature space, the features are fed into a two-stage combined classifier for classification. The learning curves are used to evaluate the performance of the proposed texture classification system. The results show that this new approach can significantly improve the performance of the classification especially for small training set size. Further, comparison between combined feature space and combined classifiers shows the superiority of the latter in terms of performance and computation complexity.


Scale-space multi-scale texture classification combined classifiers Gaussian derivatives 


  1. 1.
    Materka, A., Strzelecki, M.: Texture Analysis Methods-A Review. Technical University of Lodz, Institute of Electronics, COSTB 11 report, Brussels (1998)Google Scholar
  2. 2.
    Hadjidemetriou, E., Grossberg, M.D., Nayar, S.K.: Multiresolution Histograms and Their Use for Recognition. IEEE Trans. on PAMI 26, 831–847 (2004)Google Scholar
  3. 3.
    Andra, S., Wu, Y.: Multiresolution Histograms for SVM-Based Texture Classification. In: Kamel, M., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 754–761. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    van Ginneken, B., ter Haar Romeny, B.M.: Multi-scale Texture Classification from Generalized Locally Orderless Images. Pattern Recognition 36, 899–911 (2003)CrossRefGoogle Scholar
  5. 5.
    Kang, Y., Morooka, K., Nagahashi, H.: Scale Invariant Texture Analysis Using Multi-Scale Local Autocorrelation Features. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 363–373. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. on PAMI 24(7), 971–987 (2002)Google Scholar
  7. 7.
    Wang, L., Liu, J.: Texture Classification Using Multiresolution Markov Random Field Models. Pattern Recognition Letters 20, 171–182 (1999)CrossRefGoogle Scholar
  8. 8.
    Randen, T., Husoy, J.H.: Filtering for Texture Classification: A Comparative Study. IEEE Trans. on PAMI 21, 291–310 (1999)Google Scholar
  9. 9.
    Li, S.T., Shawe-Taylor, J.: Comparison and Fusion of Multiresolution Features for Texture Classification. Pattern Recognition Letters 26, 633–638 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Jain, A.K., Farrokhnia, F.: Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition 24, 1167–1186 (1991)CrossRefGoogle Scholar
  11. 11.
    Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support Vector Machines for Texture Classification. IEEE Trans. on PAMI 24(11), 1542–1550 (2000)Google Scholar
  12. 12.
    Haley, G.M., Manjunath, B.S.: Rotation-Invariant Texture Classification Using a Complete Space-Frequency Model. IEEE Trans. on Image Processing 8(2), 255–269 (1999)CrossRefGoogle Scholar
  13. 13.
    Choi, H., Baraniuk, R.G.: Multi-scale Image Segmentation Using Wavelet-Domain Hidden Markov Models. IEEE Trans. on Image Processing 10(1), 1309–1321 (2001)CrossRefMathSciNetGoogle Scholar
  14. 14.
    ter Haar Romeny, B.M.: Front-End Vision and Multi-scale Image Analysis: Multi-scale Computer Vision Theory and Applications (Written in Mathematica). Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  15. 15.
    Jain, A.J., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans. on PAMI 22(1), 4–37 (2000)Google Scholar
  16. 16.
    Kadah, Y.M., Farag, A., Zurad, J.M., Badawi, A.M., Youssef, A.B.M.: Classification Algorithms for Quantitative Tissue Characterization of Diffuse Liver Disease from Ultrasound Images. IEEE Trans. on Medical Imaging 15, 466–478 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Mehrdad J. Gangeh
    • 1
    • 2
  • Bart M. ter Haar Romeny
    • 2
  • C. Eswaran
    • 3
  1. 1.Multimedia University, Faculty of Engineering, CyberjayaMalaysia
  2. 2.Eindhoven University of Technology, Department of Biomedical Engineering, Biomedical Image Analysis, EindhovenThe Netherlands
  3. 3.Multimedia University, Faculty of Information Technology, CyberjayaMalaysia

Personalised recommendations