Automatic Feature Point Correspondences and Shape Analysis with Missing Data and Outliers Using MDL

  • Kalle Åström
  • Johan Karlsson
  • Olof Enquist
  • Anders Ericsson
  • Fredrik Kahl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Automatic construction of Shape Models from examples has recently been the focus of intense research. These methods have proved to be useful for shape segmentation, tracking, recognition and shape understanding. In this paper we discuss automatic landmark selection and correspondence determination from a discrete set of landmarks, typically obtained by feature extraction. The set of landmarks may include both outliers and missing data. Our framework has a solid theoretical basis using principles of Minimal Description Length (MDL). In order to exploit these ideas, new non-heuristic methods for (i) principal component analysis and (ii) Procrustes mean are derived - as a consequence of the modelling principle. The resulting MDL criterion is optimised over both discrete and continuous decision variables. The algorithms have been implemented and tested on the problem of automatic shape extraction from feature points in image sequences.


  1. 1.
    Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling. IEEE trans. on information theory 44(6), 2743–2760 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)CrossRefGoogle Scholar
  3. 3.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3d shape from image streams. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000, vol. 2 (Cat. No.PR00662), pp. 690–696 (2000)Google Scholar
  4. 4.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. medical imaging 21(5), 525–537 (2002)CrossRefGoogle Scholar
  5. 5.
    Davies, R.H., Cootes, T.F., Taylor, C.J.: A minimum description length approach to statistical shape modeling. In: Information Processing in Medical Imaging (2001)Google Scholar
  6. 6.
    Eriksson, A.P., Åström, K.: Robustness and specificity in object detection. In: Proc. International Conference on Pattern Recognition, Cambridge, UK (2004)Google Scholar
  7. 7.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Förstner, W.: A feature based correspondence algorithm for image matching. In: ISP Comm. III, Rovaniemi, International Archives of Photogrammetry, 26-3/3 (1986)Google Scholar
  9. 9.
    Gower, J.C.: Generalized procrustes analysis. Psychometrica 40, 33–50 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of the 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  11. 11.
    Jacobs, D.: Linear fitting with missing data: Applications to structure-from-motion and to characterizing intensity images. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 206–212 (1997)Google Scholar
  12. 12.
    Kanatani, K.: Geometric information criterion for model selection. Int. Journal of Computer Vision 26(3), 171–189 (1998)CrossRefGoogle Scholar
  13. 13.
    Karlsson, J., Ericsson, A.: Aligning shapes by minimising the description length. In: Scandinavian Conf. on Image Analysis, Juuensu, Finland (2005)Google Scholar
  14. 14.
    Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  15. 15.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)zbMATHCrossRefGoogle Scholar
  16. 16.
    Rohr, K.: Recognizing corners by fitting parametric models. Int. Journal of Computer Vision 9(3), 213–230 (1992)CrossRefGoogle Scholar
  17. 17.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37 (1949)Google Scholar
  18. 18.
    Shi, J., Tomasi, C.: Good features to track. In: Proc. Conf. Computer Vision and Pattern Recognition, CVPR’94 (1994)Google Scholar
  19. 19.
    Thodberg, H.H.: Minimum Description Length Shape and Appearance Models. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 51–62. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Twining, C.J., Cootes, T.F., Marsland, S., Petrovic, V.S., Schestowitz, R.S., Taylor, C.J.: Information-theoretic unification of groupwise non-rigid registration and model building. In: Proceedings of Medical Image Understanding and Analysis, vol. 2, pp. 226–230 (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Kalle Åström
    • 1
  • Johan Karlsson
    • 1
  • Olof Enquist
    • 1
  • Anders Ericsson
    • 1
  • Fredrik Kahl
    • 1
  1. 1.Centre for Mathematical Sciences, Lund UniversitySweden

Personalised recommendations