Object Class Detection Using Local Image Features and Point Pattern Matching Constellation Search

  • Alexander Drobchenko
  • Jarmo Ilonen
  • Joni-Kristian Kamarainen
  • Albert Sadovnikov
  • Heikki Kälviäinen
  • Miroslav Hamouz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


Several novel methods based on locally extracted image features and spatial constellation models have recently been introduced for invariant object class detection and recognition. The accuracy and reliability of the methods depend on the success of both tasks: image feature extraction and spatial constellation model search. In this study a novel method for object class detection is introduced. It combines supervised Gabor-based confidence-ranked image features and affine invariant point pattern matching. The method is able to deal with occlusions and its potential is demonstrated on a standard face database.


  1. 1.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Hamouz, M., Kittler, J., Kamarainen, J.K., Paalanen, P., Kalviainen, H., Matas, J.: Feature-based affine-invariant localization of faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(9), 1490–1495 (2005)CrossRefGoogle Scholar
  3. 3.
    Helmer, S., Lowe, D.G.: Object recognition with many local features. In: Workshop on Generative Model Based Vision (2004)Google Scholar
  4. 4.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on PAMI 27(10) (2005)Google Scholar
  5. 5.
    Kamarainen, J.K., Ilonen, J., Paalanen, P., Hamouz, H., Kälviäinen, H., Kittler, J.: Object evidence extraction using simple gabor features and statistical ranking. In: Proc. of the 14th Scandinavian Conf. of Image Processing, Joensuu, Finland, pp. 119–129 (2005)Google Scholar
  6. 6.
    Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. on Computers 22(1), 67–92 (1973)CrossRefGoogle Scholar
  7. 7.
    Lades, M., Vorbrüggen, J., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42, 300–311 (1993)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (1999)Google Scholar
  9. 9.
    Burl, M.C.: Recognition of Visual Object Classes. PhD thesis, California Institute of Technology (1997)Google Scholar
  10. 10.
    Kadir, T.: Scale, Saliency and Scene Description. PhD thesis, Oxford University (2002)Google Scholar
  11. 11.
    Kyrki, V., Kamarainen, J.K., Kälviäinen, H.: Simple Gabor feature space for invariant object recognition. Pattern Recognition Letters 25, 311–318 (2003)CrossRefGoogle Scholar
  12. 12.
    Paalanen, P., Kamarainen, J.K., Ilonen, J., Kälviäinen, H.: Feature representation and discrimination based on Gaussian mixture model probability densities - practices and algorithms. Pattern Recognition 39, 1346–1358 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kamarainen, J.K., Kyrki, V., Kälviäinen, H.: Invariance properties of Gabor filter based features - overview and applications. IEEE Trans. on Image Processing 15, 1088–1099 (2006)CrossRefGoogle Scholar
  14. 14.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The extended M2VTS Database. In: Chellapa, R. (ed.) Proc. of Second Int. Conf. on Audio and Video-based Biometric Person Authentication, pp. 72–77 (1999)Google Scholar
  15. 15.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Rodriguez, Y., Cardinaux, F., Bengio, S., Mariéthoz, J.: Measuring the performance of face localization systems. Image and Vision Computing 24, 882–893 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Alexander Drobchenko
    • 1
  • Jarmo Ilonen
    • 1
  • Joni-Kristian Kamarainen
    • 2
  • Albert Sadovnikov
    • 1
  • Heikki Kälviäinen
    • 1
  • Miroslav Hamouz
    • 2
  1. 1.Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology 
  2. 2.Centre for Vision, Speech and Signal Processing, University of Surrey 

Personalised recommendations