Skip to main content

Titanium Based Intermetallics

  • Chapter
Titanium

Part of the book series: Engineering Materials, Processes ((EMP))

Abstract

Intermetallic compounds, especially those formed between light elements such as Ti and Al are attractive, because of their low density and good elevated temperature strength. However, the formation of intermetallic compounds also usually reduces the symmetry of the parent metal lattice. In turn, this places additional restrictions on the available deformation modes. These restrictions usually are manifested as increased strength, at least at elevated temperatures, reduced ductility and fracture toughness. Historically, the issues associated with reduced ductility and fracture toughness have been viewed as outweighing the benefits of increased strength. Consequently, the use of intermetallic compounds in structural applications has been very limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McAndrew J. B., Kessler H. D.: Trans. AIME 206, (1956) p. 1348

    Google Scholar 

  2. Yamaguchi M., Umakoshi Y.: Progress in Materials Science 34, (1990) p. 1

    Google Scholar 

  3. Kim Y.-W., Dimiduk D. M.: J. of Metals 43, no. 8, (1991) p. 40

    Google Scholar 

  4. Yamaguchi M., Inui H.: Structural Intermetallics, TMS, Warrendale, USA, (1993) p. 127

    Google Scholar 

  5. Huang S. C. Chesnutt J. C.: Intermetallic Compounds: Principles and Practice, Vol. 2, John Wiley and Sons, New York, USA, (1995) p. 73

    Google Scholar 

  6. Dimiduk D. M.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 3

    Google Scholar 

  7. Dimiduk D. M., Martin P. L., Kim Y.-W.: Mat. Sci. Eng. A243, (1998) p. 66

    Google Scholar 

  8. Appel F., Wagner R.: Mat. Sci. Eng. R22, (1998) p. 187

    Google Scholar 

  9. Dimiduk D. M.: Intermetallics 6, (1998) p. 613

    Google Scholar 

  10. Dimiduk D. M.: Mat. Sci. Eng. A263, (1999) p. 281

    Google Scholar 

  11. Dimiduk D. M., McQuay P. A., Kim Y.-W.: Titanium ’99: Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 259

    Google Scholar 

  12. Kim Y.-W., Dimiduk D. M., Loretto M., eds.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1999)

    Google Scholar 

  13. Kim Y.-W., Wagner R., Yamaguchi M., eds.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995)

    Google Scholar 

  14. Hemker K. J., Dimiduk D. M., Clemens H., Darolia R., Inui H., Larsen J. M., Sikka V. K., Thomas M., Whittenberger J. D., eds.: Structural Intermetallics 2001, TMS, Warrendale, USA, (2001)

    Google Scholar 

  15. Lipsitt H. A.: High Temperature Ordered Intermetallic Alloys V, Mat. Res. Soc. Symp. Proc. 288, (1993) p. 119

    Google Scholar 

  16. Banerjee D., Gogia A. K., Nandy T. K., Muraleedharan K., Mishra R. S.: Structural Intermetallics, TMS, Warrendale, USA, (1993) p. 19

    Google Scholar 

  17. Banerjee D.: Intermetallic Compounds: Principles and Practice, Vol. 2, John Wiley and Sons, New York, USA, (1995) p. 91

    Google Scholar 

  18. Banerjee D.: Progress in Materials Science 42, (1997) p. 135

    Google Scholar 

  19. Nandy T. K., Banerjee D.: Structural Intermetallics, TMS, Warrendale, USA, (1997) p. 777

    Google Scholar 

  20. Gogia A. K., Nandy T. K., Banerjee D., Carisey T., Strudel J. L., Franchet J. M.: Intermetallics 6, (1998) p. 741

    Google Scholar 

  21. Marcinkowski M. J.: Electron Microscopy and Structure of Materials, University of California Press, Berkeley, USA, (1972) p. 333

    Google Scholar 

  22. Blackburn M. J.: Trans. AIME 239, (1967) p. 660

    Google Scholar 

  23. Shechtman D., Blackburn M. J., Lipsitt H.: Met. Trans. 5, (1974) p. 1373

    Google Scholar 

  24. Banerjee D., Rowe R. G., Hall E. L.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 285

    Google Scholar 

  25. Ward C. H.: Intern. Mat. Rev. 38, (1993) p. 79

    Google Scholar 

  26. Ward C. H., Williams J. C., Thompson A. W., Rosenthal D. G., Froes F. H.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis, France, (1988) p. 1103

    Google Scholar 

  27. Chesnutt J. C., Hall J. A., Lipsitt H. A.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 70

    Google Scholar 

  28. Strychor R., Williams J. C.: Solid to Solid Phase Transformations, AIME, Warrendale, USA, (1982) p. 249

    Google Scholar 

  29. Strychor R., Williams J. C., Soffa W. A.: Met. Trans. 19A, (1988) p. 225

    Google Scholar 

  30. Lütjering G., Proske G., Albrecht J., Helm D., Däubler M.: Intermetallic Compounds (JIMIS-6),The Japan Institute of Metals, Sendai, Japan, (1991) p. 537

    Google Scholar 

  31. Kumpfert J., Ward C. H., Peters M., Kaysser W. A.: Synthesis/Processing of Lightweight Metallic Materials, TMS, Warrendale, USA, (1995) p. 85

    Google Scholar 

  32. Banerjee D., Gogia A. K., Nandy T. K., Joshi V. A.: Acta Met. 36, (1988) p. 871

    Google Scholar 

  33. Rowe R. G., Banerjee D., Muraleedharan K., Larsen M., Hall E. L., Konitzer D. G., Woodfield A. P.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993) p. 1259

    Google Scholar 

  34. Kelly T. J., Austin C. M.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 192

    Google Scholar 

  35. Blackburn M. J.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970) p. 633

    Google Scholar 

  36. Seeger J., Hartig C., Bartels A., Mecking H.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA,(1991) p. 157

    Google Scholar 

  37. Bhowal P. R., Merrick H. F., Larsen D. E.: Mater. Sci. Eng. A192/193, (1995) p. 685

    Google Scholar 

  38. Huang S. C., McKee D. W., Shih D. S., Chesnutt J. C.: Intermetallic Compounds (JIMIS6),The Japan Institute of Metals, Sendai, Japan, (1991) p. 363

    Google Scholar 

  39. Proske G., Lütjering G., Albrecht J., Däubler M. A., Helm D.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 1187

    Google Scholar 

  40. Rowe R. G.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993) p. 343

    Google Scholar 

  41. Rowe R. G., Konitzer D. G., Woodfield A. P., Chesnutt J. C.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 703

    Google Scholar 

  42. Proske G., Lütjering G., Albrecht J., Helm D., Däubler M.: Mater. Sci. Eng. A152, (1992) p. 310

    Google Scholar 

  43. Lütjering G., Proske G., Terlinde G., Fischer G., Helm D.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 332

    Google Scholar 

  44. Takashima K., Cope M. T., Bowen P.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 340

    Google Scholar 

  45. Kim Y.-W., Boyer R., eds.: Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, USA, (1990)

    Google Scholar 

  46. Pope D. P., Liu C. T., Whang S. H., Yamaguchi M., eds.: High Temperature Intermetallics, Elsevier, Amsterdam, The Netherlands, (1997)

    Google Scholar 

  47. Clemens H., Kestler H.: Advanced Engineering Materials 2, (2000) p. 551

    Google Scholar 

  48. Liu C. T., Maziasz P. J., Clemens D. R., Schneibel J. H., Sikka V. J., Nieh T. G., Wright J., Walku L. R.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 679

    Google Scholar 

  49. Larsen J. M., Worth B. D., Balsone S. J., Jones J. W.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 821

    Google Scholar 

  50. Huang S. C.: US Patent 4 879 092, (1989)

    Google Scholar 

  51. Austin C., Kelly T.: Structural Intermetallics 1993, TMS, Warrendale, USA, (1993) p. 149

    Google Scholar 

  52. Austin C., Kelly T., McAllister K., Chesnutt J.: Structural Intermetallics 1997, TMS, Warrendale, USA, (1997) p. 413

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Titanium Based Intermetallics. In: Titanium. Engineering Materials, Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73036-1_8

Download citation

Publish with us

Policies and ethics