Skip to main content

Level Dependent Shifts in Auditory Nerve Phase Locking Underlie Changes in Interaural Time Sensitivity with Interaural Level Differences in the Inferior Colliculus

  • Conference paper
Hearing – From Sensory Processing to Perception

Interaural time differences are initially analyzed in the medial superior olive (MSO) in the brainstem. Neurons in this nucleus act as coincidence detectors, only firing when the activity from the two ears reaches the cell within a small time window (Batra et al. 1997a, b; Goldberg and Brown 1969; Spitzer and Semple 1995; Yin and Chan 1990). Maximal values of interaural time difference (ITD) for humans are 700 μs, with just noticeable differences often of the order of a few tens of μs (Durlach and Colburn 1978; Hafter et al. 1979; Mills 1958). To achieve such accuracy requires a very precise time signal from the two ears, which is provided by the phase-locking in the auditory nerve fibers (Johnson 1980; Kiang et al. 1965; Palmer and Russell 1986), that is a direct result of the manner of activation of the inner hair cells by the vibration of the basilar membrane (see Ruggero and Rich 1987 for a review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson D, Rose J, Hind J, Brugge J (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139.

    Article  PubMed  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997a) Sensitivity to interaural temporal disparities of low- and high- frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J Neurophysiol 73:1222–1236.

    Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997b) Sensitivity to interaural temporal disparitites of low- and high- frequency neurons in the superior olivary complex. II. Coincidence detection. J Neurophysiol 78:1237–1247.

    CAS  PubMed  Google Scholar 

  • Bullock DC, Palmer AR, Rees A (1988) Compact and easy-to-use tungsten-in-glass microelectrode manufacturing workstation. Med Biol Eng Comput 26:669–672.

    Article  CAS  PubMed  Google Scholar 

  • Cooper N, Rhode W (1995) Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res 82:225–243.

    Article  CAS  PubMed  Google Scholar 

  • Durlach NI, Colburn HS (1978) Binaural phenomena. In: Carterette EC, Friedman MP (eds) Handbook of perception, vol IV, hearing. Academic Press, New York, pp 365–466.

    Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    CAS  PubMed  Google Scholar 

  • Hafter ER, Dye RH, Gilkey RH (1979) Lateralization of tonal signals which have neither onsets nor offsets. J Acoust Soc Am 65:471–477.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT, Cambridge, Mass.

    Google Scholar 

  • Kuwada S, Yin TCT (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. J Neurophysiol 50:981–999.

    CAS  PubMed  Google Scholar 

  • McAlpine D, Palmer AR (2002) Blocking gabaergic inhibition increases sensitivity to sound motion cues in the inferior colliculus. J Neurosci 22:1443–1453.

    CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (1996) Interaural sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear Res 97:136–152.

    Article  CAS  PubMed  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246.

    Article  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Winter IM, Darwin CJ (1986) The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea-pig cochlear nerve and primary-like cochlear nucleus neurons. J Acoust Soc Am 79:100–113.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero M (2001) Mechanics of the mammalian cochlea. Physiolog Rev 81:1305–1352.

    CAS  Google Scholar 

  • Ruggero M, Rich N (1987) Timing of spike initiation in cochlear afferents: dependence on site of innervation. J Neurophysiol 58:379–403.

    CAS  PubMed  Google Scholar 

  • Shackleton TM, Skottun BC, Arnott RH, Palmer AR (2003) Interaural time difference discrimination thresholds for single neurons in the inferior colliculus of guinea pigs. J Neurosci 23:716–724.

    CAS  PubMed  Google Scholar 

  • Spitzer MW, Semple MN (1995) Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. J Neurophysiol 73:1668–1690.

    CAS  PubMed  Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488.

    CAS  PubMed  Google Scholar 

  • Yin TCT, Kuwada S (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol 50:1000–1019.

    CAS  PubMed  Google Scholar 

  • Zinn C, Maier H, Zenner H-P, Gummer A (2000) Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea pig cochlea. Hear Res 142:159–183.

    Article  CAS  PubMed  Google Scholar 

References

  • Geisler CD, Deng L, Greenberg S (1985) Thresholds for primary auditory fibers using statistically defined criteria. J Acoust Soc Am 77:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Greenberg S (1986) Possible role of low and medium spontaneous rate cochlear nerve fibers in the encoding of waveform periodicity. In: Moore B, Patterson R (eds) Auditory frequency selectivity. Plenum, New York, pp 241–248.

    Google Scholar 

  • Greenberg S, Geisler CD, Deng L (1986) Frequency selectivity of single cochlear nerve fibers based on the temporal response patterns to two-tone signals. J Acoust Soc Am 79:1010–1019.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Kiang NY-S (1978) Acoustic trauma in cats: cochlear pathology and auditory-nerve activity. Acta Oto-Laryngol Suppl Stockh 358:1–63.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palmer, A.R., Liu, LF., Shackleton, T.M. (2007). Level Dependent Shifts in Auditory Nerve Phase Locking Underlie Changes in Interaural Time Sensitivity with Interaural Level Differences in the Inferior Colliculus. In: Kollmeier, B., et al. Hearing – From Sensory Processing to Perception. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73009-5_48

Download citation

Publish with us

Policies and ethics