Embodying Cognitive Abilities: Categorization

  • Ricardo A. Téllez
  • Cecilio Angulo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


In previous woks we have introduced a distributed neural architecture for the generation of complex behaviors in evolutionary robotics. In this paper we show how this architecture is able to create its own categories about the sensed world of a robot by direct interaction of the body with the environment. The distributed elements of the architecture cooperate to express the categories on an inner world that is easily accessible from the outside. We conclude the paper with an explanation of how the inner world created by the robot can be used to gain some insight into the mind-body problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choe, Y., Bhamidipati, S.K.: Autonomous acquisition of the meaning of sensory states through sensory-invariance driven action. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 176–188. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004), http://www.ars-journal.com/ars/SubscriberArea/Volume1/39-42.pdf Google Scholar
  3. 3.
    Nolfi, S.: Using emergent modularity to develop control systems for mobile robots. Adaptative Behavior 5(3-4), 343 (1997)CrossRefGoogle Scholar
  4. 4.
    Parisi, D.: Internal robotics. Connection science 16(4), 325–338 (2004)CrossRefGoogle Scholar
  5. 5.
    Pfeifer, R., Scheier, C.: Sensory-motor coordination: the metaphor and beyond. Robotics and Autonomous Systems (Special Issue on ”Practice and future of autonomous agents”) 20, 157–178 (1997)CrossRefGoogle Scholar
  6. 6.
    Pfeifer, R., Scheier, C.: Understanding intelligence. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Philipona, D., O’Regan, J.K., Nadal, J.-P.: Is there something out there? inferring space from sensorimotor dependencies. Neural Computation 15(9) (2003)Google Scholar
  8. 8.
    te Boekhorst, R., Lungarella, M., Pfeifer, R.: Dimensionality reduction through sensory-motor coordination. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 496–503. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Téllez, R.A., Angulo, C., Pardo, D.E.: Highly Modular Architecture for the General Control of Autonomous Robots. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 709–716. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Téllez, R.A., Angulo, C., Pardo, D.E.: Evolving the Walking Behaviour of a 12 DOF Quadruped Using a Distributed Neural Architecture. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 5–19. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ricardo A. Téllez
    • 1
  • Cecilio Angulo
    • 1
  1. 1.GREC - Knowledge Engineering Research Group, UPC - Universitat Politècnica de CatalunyaSpain

Personalised recommendations