Clustering Signals Using Wavelets

  • Michel Misiti
  • Yves Misiti
  • Georges Oppenheim
  • Jean-Michel Poggi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


A wavelet-based procedure for clustering signals is proposed. It combines an individual signal preprocessing by wavelet denoising, a dimensionality reduction step by wavelet compression and a classical clustering strategy applied to a suitably chosen set of wavelet coefficients. The ability of wavelets to cope with signals of arbitrary or time-dependent regularity as well as to concentrate signal energy in few large coefficients, offers a useful tool to carry out both significant noise reduction and efficient compression. A simulated example and an electrical dataset are considered to illustrate the value of introducing wavelets for clustering such complex data.


Clustering Compression Denoising Signals Wavelets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, C., Cornillon, P., Matzner-Lober, E., Molinari, N.: Unsupervised curve clustering using B-splines. Scand. J. Stat. 30(3), 581–595 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biau, G., Bunea, F., Wegkamp, M.: Functional classification in Hilbert Spaces. IEEE Trans. Inf. Theory 51(6), 2163–2172 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Donald, D., Everingham, Y., Coomans, D.: Integrated wavelet principal component mapping for unsupervised clustering on near infra-red spectra. Chemometrics and Int. Lab. Syst. 77(1-2), 32–42 (2005)Google Scholar
  4. 4.
    Dudoit, S., Fridlyand, J., Speed, T.: Comparaison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. JASA 97(457), 77–87 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  6. 6.
    Kaufman, L., Rousseeuw, P.: Finding groups in Data, an introduction to Cluster Analysis. Wiley, Chichester (2005)Google Scholar
  7. 7.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  8. 8.
    Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M.: Les ondelettes et leurs applications. Hermes, Paris (2003)Google Scholar
  9. 9.
    Ramsay, J., Silverman, B.: Functional Data Analysis. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  10. 10.
    Vannucci, M., Sha, N., Brown, P.J.: NIR and mass spectra classification: Bayesian methods for wavelet-based feature selection. Chemometrics and Int. Lab. Syst. 77, 139–148 (2005)Google Scholar
  11. 11.
    Vlachos, M., Lin, J., Keogh, E., Gunopulos, D.: A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series. In: 3rd SIAM Conf. on Data Mining (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michel Misiti
    • 1
    • 2
  • Yves Misiti
    • 1
  • Georges Oppenheim
    • 1
    • 3
  • Jean-Michel Poggi
    • 1
    • 4
  1. 1.Laboratoire de Mathématique, Université Paris-Sud, Bât. 425, 91405 OrsayFrance
  2. 2.Ecole Centrale de LyonFrance
  3. 3.Université de Marne-la-ValléeFrance
  4. 4.Université Paris 5 DescartesFrance

Personalised recommendations