Particle Swarm Optimisation of Multiple Classifier Systems

  • Martin Macaš
  • Bogdan Gabrys
  • Dymitr Ruta
  • Lenka Lhotská
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


In this paper we present application of various versions of the particle swarm optimization method (PSO) in the process of generation of multiple-classifier systems (MCS). While some of the investigated optimisation problems naturally lend themselves to the type of optimisation for which PSO is most suitable we present some other applications requiring non-standard representation of the particles as well as handling of constraints in the optimisation process. In the most typical optimisation case the continuous version of PSO has been successfully applied for the optimization of a soft-linear combiner. On the other hand, one of the adapted binary versions of PSO has been shown to work well in the case of multi-stage organization of majority voting (MOMV), where the search dimension is high and the local search techniques can often get stuck in local optima. All three presented PSO based methods have been tested and compared to each other and to forward search and stochastic hillclimber for five real-world non-trivial datasets.


Particle Swarm Optimization Majority Vote Particle Swarm Optimization Algorithm Particle Swarm Optimization Method Forward Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruta, D., Gabrys, B.: Classifier Selection for Majority Voting. Information Fusion 6(1), 63–81 (2005)CrossRefGoogle Scholar
  2. 2.
    Gabrys, B., Ruta, D.: Genetic Algorithms in Classifier Fusion. Information Fusion 6(4), 337–347 (2006)Google Scholar
  3. 3.
    Ruta, D., Gabrys, B.: A Theoretical Analysis of the Limits of Majority Voting Errors for Multiple Classifier Systems. Pattern Analysis and Applications, 333–350 (2002)Google Scholar
  4. 4.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  5. 5.
    Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  6. 6.
    Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases. (1998),
  7. 7.
    Moody, G., Mark, R.: The MIT-BIH Arrythmia Database on CD-ROM and Software for Use with It. Computers in Cardiology, 158–188 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Macaš
    • 1
  • Bogdan Gabrys
    • 2
  • Dymitr Ruta
    • 3
  • Lenka Lhotská
    • 1
  1. 1.Czech Technical University in Prague, Technická 2, PragueCzech Republic
  2. 2.Bournemouth University, Computational Intelligence Research Group, School of Design, Engineering and Computing, Poole, Dorset, BH12 5BBUnited Kingdom
  3. 3.British Telecom,Adastral Park, Orion Building MLB 1, PP 12, Martlesham Heath, Ipswich IP5 3REUK

Personalised recommendations