Advertisement

CoEvRBFN: An Approach to Solving the Classification Problem with a Hybrid Cooperative-Coevolutive Algorithm

  • M. Dolores Pérez-Godoy
  • Antonio J. Rivera
  • M. José del Jesus
  • Ignacio Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

This paper presents a new cooperative-coevolutive algorithm for the design of Radial Basis Function Networks (RBFNs) for classification problems. The algorithm promotes a coevolutive environment where each individual represents a radial basis function (RBF) and the entire population is responsible for the final solution. As credit assignment three quality factors are considered which measure the role of the RBFs in the whole RBFN. In order to calculate the application probability of the coevolutive operators a Fuzzy Rule Base System has been used. The algorithm evaluation with different datasets has shown promising results.

Keywords

Radial Basis Function Network Cooperative-Coevolution Classification Fuzzy Rule Base System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Trans. on Evolutionary Computation 1(1), 3–17 (1997)CrossRefGoogle Scholar
  2. 2.
    Yu, B., He, X.: Training Radial Basis Function Networks with Differencial Evolution. In: IEEE International Conference on Granular Computing, pp. 369–372 (2006)Google Scholar
  3. 3.
    Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Transactions on Systems, Man. and Cybernetics, Part B 35(5), 928–947 (2005)CrossRefGoogle Scholar
  5. 5.
    Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum Associates, Mahwah (1987)Google Scholar
  6. 6.
    Golub, G., Van Loan, C.: Matrix computations, 3rd edn. J. Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  7. 7.
    González, J., Rojas, I., Ortega, J., Pomares, H., Fernández, F.J., Diaz, A.F.: Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks 14(6), 1478–1495 (2003)CrossRefGoogle Scholar
  8. 8.
    Lacerda, E., Carvalho, A., Braga, A., Ludermir, T.: Evolutionary Radial Basis Functions for Credit Assessment. Applied Intelligence 22(3), 167–181 (2005)CrossRefGoogle Scholar
  9. 9.
    Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7(1), 1–13 (1975)CrossRefGoogle Scholar
  10. 10.
    Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computing 1, 281–294 (1989)CrossRefGoogle Scholar
  11. 11.
    Nabvey, J., Darken, C.J.: Netlab Neural Network Software. http://www.ncrg.aston.ac.uk/netlabGoogle Scholar
  12. 12.
    Neruda, R., Kudová, P.: Learning methods for radial basis function networks. Future Generation Computer Systems 21(7), 1131–1142 (2005)CrossRefGoogle Scholar
  13. 13.
    Newrb, Matlab neural networks toolboxGoogle Scholar
  14. 14.
    Park, J., Sandberg, I.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)CrossRefGoogle Scholar
  15. 15.
    Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks 9(4), 601–612 (1998)CrossRefGoogle Scholar
  16. 16.
    Potter, M., De Jong, K.: Cooperative Coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)CrossRefGoogle Scholar
  17. 17.
    Powell, M.: Radial basis functions for multivariable interpolation: A review. In: IMA. Conf. on Algorithms for the approximation of functions and data, pp. 143–167 (1985)Google Scholar
  18. 18.
    Rivera, A.J., Rojas, I., Ortega, J., del Jesús, M.J.: A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11(7), 655–668 (2007), doi:10.1007/s00500-006-0128-9Google Scholar
  19. 19.
    Tian, J., Li, M.-Q., Chen, F.-Z.: A three-phase rbfnn learning algorithm for complex classification. In: International Conf. on Machine Learning and Cybernetics, pp. 4134–4139 (2005)Google Scholar
  20. 20.
    Topchy, A., Lebedko, O., Miagkikh, V., Kasabov, N.: Adaptive training of radial basis function networks based on co-operative evolution and evolutionary programming. In: Kasabov, N., et al. (eds.) Progress in Connectionist-Based Information Systems, pp. 253–258. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Wallace, M., Tsapatsoulis, N., Kollias, S.: Intelligent initialization of resource allocating RBF networks. Neural Networks 18(2), 117–122 (2005)CrossRefGoogle Scholar
  22. 22.
    Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)CrossRefGoogle Scholar
  23. 23.
    Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Dolores Pérez-Godoy
    • 1
  • Antonio J. Rivera
    • 1
  • M. José del Jesus
    • 1
  • Ignacio Rojas
    • 2
  1. 1.Dept. of Computer Science, University of Jaén, JaénSpain
  2. 2.Dept. of Computers Technology and Arquitecture University of Granada, GranadaSpain

Personalised recommendations