Advertisement

Multi-classification with Tri-class Support Vector Machines. A Review

  • C. Angulo
  • L. González
  • A. Català
  • F. Velasco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

In this article, with the aim to avoid the loss of information that occurs in the usual one-versus-one SVM decomposition procedure of the two-phases (decomposition, reconstruction) multi-classification scheme tri-class SVM approach is addressed. As the most relevant result, it will be demonstrated the robustness improvement of the proposed scheme based on tri-class machine versus that based on the bi-class machine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiolli, F., Sperduti, A.: Multiclass classification with multi-prototype support vector machine. Journal of Machine Learning Research 6, 817–850 (2005)MathSciNetGoogle Scholar
  2. 2.
    Angulo, C.: Learning with Kernel Machines into a Multi-Class Environment (In Spanish). Doctoral thesis, Technical University of Catalonia (April 2001)Google Scholar
  3. 3.
    Angulo, C., González, L.: 1-v-1 Tri-Class SV Machine. In: Proceedings of the 11th European Symposium on Artificial Neural Networks, ESANN, pp. 355–360 (2003)Google Scholar
  4. 4.
    Angulo, C., Parra, X., Català, A.: K-SVCR. A support vector machine for multi-class classification. Neurocomputing 55(1-2), 57–77 (2003)CrossRefGoogle Scholar
  5. 5.
    Angulo, C., Ruiz, F., González, L., Ortega, J.A.: Multi-classification by using tri-class SVM. Neural Proceeding Letters 23(1), 89–101 (2006)CrossRefGoogle Scholar
  6. 6.
    Bennett, K., Bredensteiner, E.: Duality and geometry in SVM classifiers. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 57–64. Morgan Kaufmann, San Francisco (2000)Google Scholar
  7. 7.
    Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)CrossRefGoogle Scholar
  8. 8.
    Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Machine Learning 47(2-3), 201–233 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Crammer, K., Singer, Y.: Pranking with ranking. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 641–647. MIT Press, Cambridge (2002)Google Scholar
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)Google Scholar
  11. 11.
    González, L.: Discriminative analysis using support vector kernel machines. The similitary kernel function (In Spanish). Master’s thesis, Dept. of Applied Economy I. University of Seville (2002)Google Scholar
  12. 12.
    González, L., Angulo, C., Velasco, F., Vilchez, M.: Máquina ℓ-SVCR con salidas probabilísticas. Inteligencia Artificial 17, 72–82 (2002)Google Scholar
  13. 13.
    González, L., Angulo, C., Velasco, F., Catala, A.: Unification of all bi-class SVM approaches. Pattern Recognition 38(10), 1772–1774 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    González, L., Angulo, C., Velasco, F., Catala, A.: Dual unification of bi-class support vector machine formulations. Pattern Recognition 39(7), 1325–1332 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hein, M., Bousquet, O.: Maximal Margin Classification for Metric Spaces. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 72–86. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Kressel, U.: Pairwise classification and support vector machine. In: Advances in Kernel Methods: Support Vector Learning, pp. 255–268. MIT Press, Cambridge (1999)Google Scholar
  17. 17.
    Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Neural Information Processing Systems, vol. 12 (2000)Google Scholar
  18. 18.
    Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)Google Scholar
  19. 19.
    Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches. In: Thrun, S., Becker, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, pp. 937–944. MIT Press, Cambridge (2003)Google Scholar
  20. 20.
    Shashua, A., Levin, A.: Taxonomy of large margin principle algorithms for ordinal regression problems. In: Neural Information Processing Systems, vol. 16 (2002)Google Scholar
  21. 21.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)zbMATHGoogle Scholar
  22. 22.
    Zhong, P., Fukushima, M.: A new multi-class support vector algorithm. Optimization Methods and Software 21(3), 359–372 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. Angulo
    • 1
  • L. González
    • 2
  • A. Català
    • 1
  • F. Velasco
    • 2
  1. 1.GREC, Universitat Politècnica de Catalunya, Vilanova i GeltrúSpain
  2. 2.COSDE. Depto. de Economía Aplicada I, Universidad de SevillaSpain

Personalised recommendations