Advertisement

Kernel Machines for Non-vectorial Data

  • F. J. Ruiz
  • C. Angulo
  • N. Agell
  • A. Català
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

This work presents a short introduction to the main ideas behind the design of specific kernel functions when used by machine learning algorithms, for example support vector machines, in the case that involved patterns are described by non-vectorial information. In particular the interval data case will be analysed as an illustrating example: explicit kernels based on the centre-radius diagram will be formulated for closed bounded intervals in the real line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)MathSciNetGoogle Scholar
  2. 2.
    Angulo, C., Anguita, D., González, L.: Interval discriminant analysis using support vector machines. In: ESANN (2007)Google Scholar
  3. 3.
    Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)Google Scholar
  4. 4.
    Kulpa, Z.: Diagrammatic representation for interval arithmetic. Linear Algebra and its Applications 324(1-3), 55–80 (2001), citeseer.ist.psu.edu/597362.html zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, C.J.C.H.: Text Classification using String Kernels. In: Adv. Neural Inform. Process. Syst., pp. 563–569 (2000), http://www.neurocolt.com/tech_reps/2000/00079.ps.gz
  6. 6.
    Mercer, J.: Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London 209, 415–446 (1909)CrossRefGoogle Scholar
  7. 7.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997), http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html zbMATHGoogle Scholar
  8. 8.
    Ruiz, F.J., Angulo, C., Agell, N.: A kernel intersection defined on intervals. In: Aguiló, I., Vitrià, J., Radeva, P. (eds.) Frontiers in Artificial Intelligence and Applications: Recent Advances in Artificial Intelligence Research and Development, pp. 103–110. IOS Press, Amsterdam (2004)Google Scholar
  9. 9.
    Sánchez, M., Prats, F., Agell, N., Rovira, X.: Kernel functions over orders of magnitude spaces by means of usual kernels. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 69–78. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • F. J. Ruiz
    • 1
  • C. Angulo
    • 1
  • N. Agell
    • 2
  • A. Català
    • 1
  1. 1.GREC - Knowledge Engineering Research Group, UPC - Universitat Politècnica de CatalunyaSpain
  2. 2.GREC - Knowledge Engineering Research Group, ESADE-URL - Universitat Ramon LlullSpain

Personalised recommendations