Fusion of Self Organizing Maps

  • Carolina Saavedra
  • Rodrigo Salas
  • Sebastián Moreno
  • Héctor Allende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


An important issue in data-mining is to find effective and optimal forms to learn and preserve the topological relations of highly dimensional input spaces and project the data to lower dimensions for visualization purposes.

In this paper we propose a novel ensemble method to combine a finite number of Self Organizing Maps, we called this model Fusion-SOM. In the fusion process the nodes with similar Voronoi polygons are merged in one fused node and the neighborhood relation is given by links that measures the similarity between these fused nodes. The aim of combining the SOM is to improve the quality and robustness of the topological representation of the single model.

Computational experiments show that the Fusion-SOM model effectively preserves the topology of the input space and improves the representation of the single SOM. We report the performance results using synthetic and real datasets, the latter obtained from a benchmark site.


Machine ensembles Self Organizing Maps Machine Fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)Google Scholar
  2. 2.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Efron, B.: Bootstrap methods: another look at the jacknife. The Annals of Statistics 7, 1–26 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kangas, J., Kohonen, T., Laaksonen, J.: Variants of self organizing maps. IEEE Trans. on Neural Networks 1(1), 93–99 (1990)CrossRefGoogle Scholar
  5. 5.
    Kohonen, T.: Self-Organizing Maps, 3rd ext. edn. Springer Series in Information Sciences, vol. 30. Springer Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  6. 6.
    Kuncheva, L.: Switching between selection and fusion in combining classifiers: An experiment. IEEE Trans. on System Man, And Cybernetics – Part B 32(2), 146–156 (2002)CrossRefGoogle Scholar
  7. 7.
    Kuncheva, L.: Combining pattern classifiers: Methods and algorithms. Wiley, Chichester (2004)zbMATHGoogle Scholar
  8. 8.
    Martinetz, T., Berkovich, S., Schulten, K.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–568 (1993)CrossRefGoogle Scholar
  9. 9.
    Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)CrossRefGoogle Scholar
  10. 10.
    Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Trans. on Neural Networks 13(6), 1331–1341 (2002)CrossRefGoogle Scholar
  11. 11.
    Salas, R., Allende, H., Moreno, S., Saavedra, C.: Flexible architecture of self organizing maps for changing environments. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 642–653. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Salas, R., Moreno, S., Allende, H., Moraga, C.: Robust and flexible model of hierarchical self organizing maps for non-stationary environments. To appear in Neurocomputing (2006)Google Scholar
  13. 13.
    Schapire, R.: The boosting approach to machine learning: An overview (2001)Google Scholar
  14. 14.
    Villmann, T., Merényi, E.: Extensions and modifications of the Kohonen-SOM and applications in remote sensing image analysis. In: Seiffert, U., Jain, L.C. (eds.) Self-Organizing Maps. Studies in Fuzziness and Soft Computing, pp. 121–145. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carolina Saavedra
    • 1
  • Rodrigo Salas
    • 2
  • Sebastián Moreno
    • 1
  • Héctor Allende
    • 1
  1. 1.Universidad Técnica Federico Santa María; Dept. de InformáticaChile
  2. 2.Universidad de Valparaíso; Departamento de Ingeniería BiomédicaChile

Personalised recommendations