Advertisement

Two Pages Graph Layout Via Recurrent Multivalued Neural Networks

  • Domingo López-Rodríguez
  • Enrique Mérida-Casermeiro
  • Juan M. Ortíz-de-Lazcano-Lobato
  • Gloria Galán-Marín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

In this work, we propose the use of two neural models performing jointly in order to minimize the same energy function. This model is focused on obtaining good solutions for the two pages book crossing problem, although some others problems can be efficiently solved by the same model. The neural technique applied to this problem allows to reduce the energy function by changing outputs from both networks –outputs of first network representing location of nodes in the nodes line, while the outputs of the second one meaning the half-plane where the edges are drawn.

Detailed description of the model is presented, and the technique to minimize an energy function is fully described. It has proved to be a very competitive and efficient algorithm, in terms of quality of solutions and computational time, when compared to the state-of-the-art methods. Some simulation results are presented in this paper, to show the comparative efficiency of the methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chinn, P.Z., Chvátalová, L., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices – a survey. J. Graph Theory 6, 223–253 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Kainen, P.C.: The book thickness of a graph, ii. Congr. Numer. 71, 127–132 (1990)MathSciNetGoogle Scholar
  3. 3.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to vlsi design. SIAM J. Alg. Disc. Meth. 8, 33–58 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Malitz, S.M.: On the page number of graphs. J. Algorithms 17, 71–84 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Los Alamitos (1984)zbMATHGoogle Scholar
  6. 6.
    Raghavan, R., Sahni, S.: Single row routing. IEEE Trans. Comput. C-32, 209–220 (1983)CrossRefGoogle Scholar
  7. 7.
    Sinden, F.W.: Topology of thin films circuit. Bell Syst. Tech. Jour. XLV, 1639–1666 (1966)Google Scholar
  8. 8.
    Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man. Cybern. 18, 61–79 (1988)CrossRefGoogle Scholar
  9. 9.
    Cimikowski, R.: Algorithms for the fixed linear crossing number problem. Discrete Applied Mathematics 122, 93 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Nicholson, T.A.J.: Permutation procedure for minimising the number of crossings in a network. Proc. IEE 115, 21–26 (1968)MathSciNetGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Crossing number is np-complete. SIAM J. Alg. Disc. Methods 4, 312–316 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings of graphs. IEEE Trans. Comput. 39, 124–127 (1990)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cimikowski, R., Shope, P.: A neural-network algorithm for a graph layout problem. IEEE Transactions on Neural Networks 7, 341–345 (1996)CrossRefGoogle Scholar
  14. 14.
    Takefuji, Y.: Design of parallel distributed cauchy machines. In: Proc. Int. Joint Conf. Neural Networks, pp. 529–536 (1989)Google Scholar
  15. 15.
    Takefuji, Y.: Neural Network Parallel Computing. Kluwer Academic Publishers, Dordrecht (1992)zbMATHGoogle Scholar
  16. 16.
    Mérida-Casermeiro, E., Galán-Marín, G., Muñoz Pérez, J.: An efficient multivalued hopfield network for the travelling salesman problem. Neural Processing Letters 14, 203–216 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Mérida-Casermeiro, E., Muñoz Pérez, J., Domínguez-Merino, E.: An n-parallel multivalued network: Applications to the travelling salesman problem. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 406–413. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Mérida-Casermeiro, E., López-Rodríguez, D.: Graph partitioning via recurrent multivalued neural networks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 1149–1156. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    López-Rodríguez, D., Mérida-Casermeiro, E., Ortiz-de-Lazcano-Lobato, J.M., López-Rubio, E.: Image Compression by Vector Quantization with Recurrent Discrete Networks. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 595–605. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Domingo López-Rodríguez
    • 1
  • Enrique Mérida-Casermeiro
    • 1
  • Juan M. Ortíz-de-Lazcano-Lobato
    • 2
  • Gloria Galán-Marín
    • 3
  1. 1.Department of Applied Mathematics, University of Málaga, MálagaSpain
  2. 2.Department of Computer Science and Artificial Intelligence, University of Málaga, MálagaSpain
  3. 3.Department of Electronics and Electromechanical Engineering, University of Extremadura, BadajozSpain

Personalised recommendations