Advertisement

Building Automated Negotiation Strategies Enhanced by MLP and GR Neural Networks for Opponent Agent Behaviour Prognosis

  • Ioanna Roussaki
  • Ioannis Papaioannou
  • Miltiades Anangostou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

A quite challenging research field in the artificial intelligence domain is the design and evaluation of agents handling automated negotiations on behalf of their human or corporate owners. This paper aims to enhance such agents with techniques enabling them to predict their opponents’ negotiation behaviour and thus achieve more profitable results and better resource utilization. The proposed learning techniques are based on MLP and GR neural networks (NNs) that are used mainly to detect at an early stage the cases where agreements are not achievable, supporting the decision of the agents to withdraw or not from the specific negotiation thread. The designed NN-assisted negotiation strategies have been evaluated via extensive experiments and are proven to be very useful.

Keywords

negotiating agents MLP & GR neural networks NN-assisted negotiation strategies opponent behaviour prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kraus, S.: Automated Negotiation and Decision Making in Multiagent Environments. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp. 150–172. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Lomuscio, A., Wooldridge, M.J., Jennings, N.R.: A Classification Scheme for Negotiation in Electronic Commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 19–33. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Faratin, P., Sierra, C., Jennings, N.J.: Negotiation Decision Functions for Autonomous Agents. Int. J. of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)CrossRefGoogle Scholar
  4. 4.
    Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation among Computers. MIT Press, MA (1994)Google Scholar
  5. 5.
    Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., Wooldridge, M.: Automated Negotiation: Prospects, Methods, and Challenges. Int. J. of Group Decision and Negotiation 10(2), 199–215 (2001)CrossRefGoogle Scholar
  6. 6.
    Lai, G., Li, C., Sycara, K., Giampapa, K.: Literature Review on Multi-attribute Negotiations. Technical Report CMU-RI-TR-04-66, Robotics Institute, Carnegie Mellon University, Pittsburgh, USA (2004)Google Scholar
  7. 7.
    Muller, H.: Negotiation principles. In: O’Hare, G., Jennings, N. (eds.) Foundations of Distributed Artificial Intelligence, pp. 211–229. John Wiley and Sons, New York (1996)Google Scholar
  8. 8.
    Skylogiannis, T., Antoniou, G., Skylogiannis, N., Governatori, G.: DR-NEGOTIATE - A System for Automated Agent Negotiation with Defeasible Logic-Based Strategies. In: IEEE Int. Conf. on e-Technology, e-Commerce and e-Service (EEE’05), Hong Kong China (2005)Google Scholar
  9. 9.
    Osborne, M., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)Google Scholar
  10. 10.
    Kraus, S.: Strategic Negotiation in Multiagent Environments. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  11. 11.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, London (1999)zbMATHGoogle Scholar
  12. 12.
    Caudill, M., Butler, C.: Understanding Neural Networks: Computer Explorations, vol. 1-2, 1st edn. MIT Press, Cambridge (1992)Google Scholar
  13. 13.
    Hagan, M., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing Company, Boston (1996)Google Scholar
  14. 14.
    Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing, vol. 1, MIT Press, Cambridge (1986)Google Scholar
  15. 15.
    Duch, W., Jankowski, N.: Survey of Neural Transfer Functions. Neural Computing Surveys 2, 163–212 (1999)Google Scholar
  16. 16.
    Wasserman, P.D.: Advanced Methods in Neural Computing. John Wiley and Sons, New York (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ioanna Roussaki
    • 1
  • Ioannis Papaioannou
    • 1
  • Miltiades Anangostou
    • 1
  1. 1.National Technical University of Athens, School of Electrical and Computer Engineering, 9 Heroon Polytechneiou Str, 157-73 AthensGreece

Personalised recommendations