A Comparison Between ANN Generation and Training Methods and Their Development by Means of Graph Evolution: 2 Sample Problems

  • Daniel Rivero
  • Julián Dorado
  • Juan R. Rabuñal
  • Marcos Gestal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


This paper presents a study in which a new technique for automatically developing Artificial Neural Networks (ANNs) by means of Evolutionary Computation (EC) tools is compared with the traditional evolutionary techniques used for ANN development. The technique used here is based on network encoding on graphs and also their performance and evolution. For this comparison, 2 different real-world problems have been solved using various tools, and the results are presented here. According to them, the results obtained with this technique can beat those obtained with other ANN development tools.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  2. 2.
    Rabuñal, J.R., Dorado, J. (eds.): Artificial Neural Networks in Real-Life Applications. Idea Group Inc., Hershey (2005)Google Scholar
  3. 3.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  4. 4.
    Gruau, F.: Genetic micro programming of neural networks. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 495–518. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Luke, S., Spector, L.: Evolving Graphs and Networks with Edge encoding: Preliminary Report. In: Koza, J. (ed.) Late Breaking Papers at the Genetic Programming 1996 Conference (GP96), pp. 117–124. Stanford Bookstore, Stanford (1996)Google Scholar
  6. 6.
    Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-Evolution in Graph GP. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 15–28. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Poli, R.: Evolution of Graph-like Programs with Parallel Distributed Genetic Programming. In: Genetic Algorithms: Proceedings of the Seventh International Conference (1997)Google Scholar
  8. 8.
    Teller, A., Veloso, M.: Internal reinforcement in a connectionist genetic programming approach. Artificial Intelligence 120(2), 165–198 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Janson, D.J., Frenzel, J.F.: Training product unit neural networks with genetic algorithms. IEEE Expert 8, 26–33 (1993)CrossRefGoogle Scholar
  10. 10.
    Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation 10(4), 371–395 (2002)CrossRefGoogle Scholar
  11. 11.
    Belew, R., McInerney, J., Schraudolph, N.: Evolving networks: using the genetic algorithm with connectioninst learning. In: Proceedings of the Second Artificial Life Conference, New York, pp. 511–547. Addison-Wesley, London (1991)Google Scholar
  12. 12.
    Marshall, S.J., Harrison, R.F.: Optimization and training of feedforward neural networks by genetic algorithms. In: Proceedings of the Second International Conference on Artificial Neural Networks and Genetic Algorithms, pp. 39–43. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)zbMATHGoogle Scholar
  14. 14.
    Nolfi, S., Parisi, D.: Evolution of Artificial Neural Networks. In: Handbook of brain theory and neural networks, 2nd edn., pp. 418–421. MIT Press, Cambridge (2002)Google Scholar
  15. 15.
    Ozdemir, M., Embrechts, F., Breneman, C.M., Lockwood, L., Bennett, K.P.: Feature selection for in-silico drug design using genetic algorithms and neural networks. In: IEEE Mountain Workshop on Soft Computing in Industrial Applications, pp. 53–57. IEEE Press, New York (2001)CrossRefGoogle Scholar
  16. 16.
    Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–200 (1995)CrossRefGoogle Scholar
  17. 17.
    Rivero, D., Dorado, J., Rabuñal, J.R., Pazos, A., Pereira, J.: Artificial Neural Network Development by means of Genetic Programming with Graph Codification Enformatika. Transactions on Engineering, Computing and Technology, 209–214 (2006)Google Scholar
  18. 18.
    Cantú-Paz, E., Kamath, C.: An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems, IEEE Transactions on systems, Man and Cybernetics – Part B: Cybernetics, 915–927 (2005)Google Scholar
  19. 19.
    Mertz, C.J., Murphy, P.M.L.: UCI repository of machine learning databases (2002),
  20. 20.
    Reed, R.: Pruning algorithms – a survey. IEEE Transactions on Neural Networks 4(5), 740–747 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Rivero
    • 1
  • Julián Dorado
    • 1
  • Juan R. Rabuñal
    • 1
  • Marcos Gestal
    • 1
  1. 1.Department of Information & Communications Technologies, Campus Elviña, 15071, A CoruñaSpain

Personalised recommendations