Advertisement

Unified Analysis and Design of ART/SOM Neural Networks and Fuzzy Inference Systems Based on Lattice Theory

  • Vassilis G. Kaburlasos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

Fuzzy interval numbers (FINs, for short) is a unifying data representation analyzable in the context of lattice theory. This work shows how FINs improve the design of popular neural/fuzzy paradigms.

Keywords

Adaptive Resonance Theory (ART) Self-Organizing Map (SOM) Neural Networks Fuzzy Inference System (FIS) Lattice Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4(6), 759–771 (1991)CrossRefGoogle Scholar
  2. 2.
    Cripps, A., Nguyen, N.: Fuzzy lattice reasoning (FLR) classification using similarity measures. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, Springer, Heidelberg (2007)Google Scholar
  3. 3.
    John, R., Coupland, S.: Extensions to type-1 fuzzy logic: Type-2 fuzzy logic and uncertainty. In: Yen, G.Y., Fogel, D.B. (eds.) Computational Intelligence: Principles and Practice, pp. 89–101. IEEE Computational Intelligence Society (2006)Google Scholar
  4. 4.
    Kaburlasos, V.G.: Towards a Unified Modeling and Knowledge Representation Based on Lattice Theory. Computational Intelligence and Soft Computing Applications. Studies in Computational Intelligence, vol. 27. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Kaburlasos, V.G., Kehagias, A.: Novel fuzzy inference system (FIS) analysis and design based on lattice theory. IEEE Trans. Fuzzy Systems 15(2), 243–260 (2007)CrossRefGoogle Scholar
  6. 6.
    Kaburlasos, V.G., Papadakis, S.E.: Granular self-organizing map (grSOM) for structure identification. Neural Networks 19(5), 623–643 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kaburlasos, V.G., Petridis, V.: Fuzzy lattice neurocomputing (FLN) models. Neural Networks 13(10), 1145–1170 (2000)CrossRefGoogle Scholar
  8. 8.
    Kaburlasos, V.G., Ritter, G.X. (eds.): Computational Intelligence Based on Lattice Theory. Studies in Computational Intelligence, vol. 67. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Kaburlasos, V.G., Athanasiadis, I.N., Mitkas, P.A.: Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. Intl. J. Approximate Reasoning (in press) (2007)Google Scholar
  10. 10.
    Kohonen, T.: Self-Organizing Maps. Information Sciences, vol. 30. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Intl. J. Man-Machine Studies 7, 1–13 (1975)zbMATHCrossRefGoogle Scholar
  12. 12.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)zbMATHGoogle Scholar
  13. 13.
    Pedrycz, W.: Knowledge-Based Clustering — From Data to Information Granules. John Wiley and Sons, Hoboken (2005)zbMATHGoogle Scholar
  14. 14.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Systems 28(1), 15–33 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man, Cybern. 15(1), 116–132 (1985)zbMATHGoogle Scholar
  16. 16.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, I. Information Sciences 8(3), 199–249 (1975)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vassilis G. Kaburlasos
    • 1
  1. 1.Technological Educational Institution of Kavala, Department of Industrial Informatics, 65404 KavalaGreece

Personalised recommendations