A Study on the Use of Statistical Tests for Experimentation with Neural Networks

  • Julián Luengo
  • Salvador García
  • Francisco Herrera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


In this work, we get focused on the use of statistical techniques for behavior analysis of Artificial Neural Networks in the task of classification. A study of the non-parametric tests use is presented, using some well-known models of neural networks. The results show the need of using non-parametric statistic, because the Artificial Neural Networks used do not verify the hypothesis required for classical parametric tests.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpaydin, E.: Combined 5 x 2 cv F test for comparing supervised classification learning algorithms. Neural Computation 11, 1885–1892 (1999)CrossRefGoogle Scholar
  2. 2.
    Castillo-Valdivieso, P.A., Merelo, J.J., Prieto, A., Rojas, I., Romero, G.: Statistical analysis of the parameters of a neuro-genetic algorithm. IEEE Transactions on Neural Networks 13, 1374–1394 (2002)CrossRefGoogle Scholar
  3. 3.
    Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)Google Scholar
  4. 4.
    Gao, D., Madden, M., Chambers, D., Lyons, G.: Bayesian ANN classifier for ECG arrhythmia diagnostic system: A comparison study. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2383–2388 (2005)Google Scholar
  5. 5.
    Iman, R.L., Davenport, J.M.: Approximations of the critical region of the Friedman statistic. Communications in Statistics, pp. 571–595 (1980)Google Scholar
  6. 6.
    Rojas, R., Feldman, J.: Neural Networks: A Systematic Introduction. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Shaffer, J.P.: Multiple Hypothesis testing. Annual Review of Psychology 46, 561–584 (1995)CrossRefGoogle Scholar
  8. 8.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2000)zbMATHGoogle Scholar
  9. 9.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)CrossRefGoogle Scholar
  10. 10.
    Yingwei, L., Sundararajan, N., Saratchandran, P.: A sequential learning svheme for function approximation using minimal radial basis function neural networks. Neural Computation 9, 361–478 (1997)CrossRefGoogle Scholar
  11. 11.
    Zar, J.H.: Biostatistical Analysis. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  12. 12.
    Zekic-Susac, M., Horvat, J.: Modeling computer and Web attitudes using neural networks. In: Proceedings of the International Conference on Information Technology Interfaces, vol. 4, pp. 2383–2388 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Julián Luengo
    • 1
  • Salvador García
    • 1
  • Francisco Herrera
    • 1
  1. 1.University of Granada, Department of Computer Science and Artificial Intelligence, E.T.S.I. Informática, 18071 GranadaSpain

Personalised recommendations