Skip to main content

Quotients over Minimal Type Theory

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

We consider an extensional version, called qmTT, of the intensional Minimal Type Theory mTT, introduced in a previous paper with G. Sambin, enriched with proof-irrelevance of propositions and effective quotient sets. Then, by using the construction of total setoid à la Bishop we build a model of qmTT over mTT.

The design of an extensional type theory with quotients and its interpretation in mTT is a key technical step in order to build a two level system to serve as a minimal foundation for constructive mathematics as advocated in the mentioned paper about mTT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthes, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Programming, Special issue on Logical frameworks and metalanguages 13(2), 261–293 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill Book Co, New York (1967)

    MATH  Google Scholar 

  3. Carboni, A.: Some free constructions in realizability and proof theory. J. Pure Appl. Algebra 103, 117–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlström, J.: Subsets, quotients and partial functions in Martin-Löf’s type theory. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, Springer, Berlin (2003)

    Chapter  Google Scholar 

  5. Carlström, J.: EM + Ext- + ACint is equivalent to ACext. Mathematical Logic Quarterly 50(3), 236–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carboni, A., Celia Magno, R.: The free exact category on a left exact one. Journal of Australian Math. Soc. 33, 295–301 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carboni, A., Rosolini, G.: Locally cartesian closed exact completions. J. Pure Appl. Algebra, Category theory and its applications (Montreal, QC 1997) pp. 103–116, (2000)

    Google Scholar 

  8. Carboni, A., Vitale, E.M.: Regular and exact completions. Journal of Pure. and Applied Algebra 125, 79–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Bruijn, N.G.: Telescopic mapping in typed lambda calculus. Information and Computation 91, 189–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Hofmann, M.: Extensional Constructs in Intensional Type Theory. In: Distinguished Dissertations, Springer, Heidelberg (1997)

    Google Scholar 

  12. Hyland, J.M.E.: The effective topos. In: The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981) Stud. Logic Foundations Math. Stud. Logic Foundations Math, vol. 110, pp. 165–216. North-Holland, Amsterdam-New York (1982)

    Google Scholar 

  13. Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic. Studies in Logic, vol. 141. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  14. Johnstone, P.T.: Sketches of an Elephant: a Topos Theory Compendium. vol. 2., volume 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York (2002)

    Google Scholar 

  15. Maietti, M.E.: About effective quotients in constructive type theory. In: Naraschewski, W., Altenkirch, T., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 164–178. Springer, Heidelberg (1999)

    Google Scholar 

  16. Maietti, M.E.: Modular correspondence between dependent type theories and categories including pretopoi and topoi. Mathematical Structures in Computer Science 15(6), 1089–1149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martin-Löf, P.: Intuitionistic Type Theory, notes by G. Sambin of a series of lectures given in Padua, June 1980. Bibliopolis, Naples (1984)

    Google Scholar 

  18. Martin Löf, P.: On the meanings of the logical constants and the justifications of the logical laws. In: Proceedings of the conference on mathematical logic, volume 2, pp. 203–281. Univ. Siena, Siena, 1985. Reprinted in Nordic J. Philos. Logic, 1(1):11–60 (1996)

    Google Scholar 

  19. Martin-Löf, P.: 100 years of Zermelo’s axiom of choice:what was the problem with it? The Computer Journal 49(3), 10–37 (2006)

    Google Scholar 

  20. Maietti, M.E., Sambin, G.: Toward a minimalist foundation for constructive mathematics. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Practicable Foundations for Constructive Mathematics, in Oxford Logic Guides, vol. 48, pp. 91–114. Oxford University Press, Oxford (2005)

    Chapter  Google Scholar 

  21. Maietti, M.E., Valentini, S.: Can you add powersets to Martin-Löf intuitionistic type theory? Mathematical Logic Quarterly 45, 521–532 (1999)

    Article  MATH  Google Scholar 

  22. Nordström, B., Petersson, K., Smith, J.: Programming in Martin Löf’s Type Theory. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  23. Palmgren, E.: Bishop’s set theory. Slides for lecture at the TYPES summer school (2005)

    Google Scholar 

  24. Sambin, G.: Some points in formal topology. Theoretical Computer Science (2003)

    Google Scholar 

  25. Seely, R.A.G.: Hyperdoctrines, natural deduction and the Beck condition. Zeitschr. f. Math. Logik. und Grundlagen d. Math. 29, 505–542 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sambin, G., Valentini, S.: Building up a toolbox for Martin-Löf’s type theory: subset theory. In: Sambin, G., Smith, J. (eds.) Twenty-five years of constructive type theory. Proceedings of a Congress held in Venice, October 1995, pp. 221–244. Oxford U. P, Oxford (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maietti, M.E. (2007). Quotients over Minimal Type Theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics