Skip to main content

Weakly Dissipative Systems in Celestial Mechanics

  • Chapter
Book cover Topics in Gravitational Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 729))

Abstract

. We investigate the dynamics associated to nearly integrable dissipative systems, with particular reference to some models of Celestial Mechanics which can be described in a weakly dissipative framework. We start by studying some paradigmatic models provided by the dissipative standard maps in two- and four-dimensions. The dynamical investigation is performed applying frequency analysis and computing the di?erential fast Lyapunov indicators. After recalling a few properties of adiabatic invariants, we provide some examples of nearly integrable dissipative systems borrowed from Celestial Mechanics, and precisely the spin-orbit coupling and the three-body problem. We conclude with a discussion on the existence of periodic orbits in dissipative autonomous and non-autonomous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaugè, C., and Ferraz–Mello, S., 1994, Capture in exterior mean–motion resonances due to Poynting-Robertson drag. Icarus 110, 239–260.

    Article  ADS  Google Scholar 

  2. Beaugè, C., and Ferraz–Mello, S., 1993, Resonance trapping in the primordial solar nebula: The case of a Stokes drag dissipation. Icarus 103, 301–318.

    Article  ADS  Google Scholar 

  3. Bohr, T., Bak P., and Jensen, M. H., 1984, ransition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps. Phys. Rev. A 30(4), 1970–1981.

    Article  ADS  MathSciNet  Google Scholar 

  4. Broer, H. W., Simò C., and Tatjer, J. C., 1998, Towards global models near homoclinic tangencies of dissipative diffeomorphisms. Nonlinearity 11, 667–770.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Celletti, A., 1990, Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I). J. Appl. Math. Phys. (ZAMP) 41, 174–204.

    Article  MATH  MathSciNet  Google Scholar 

  6. Celletti, A., Della Penna, G., and Froeschlé, C., 1998, Analytical approximation of the solution of the dissipative standard map. Int. J. Bif. Chaos 8(12), 2471–2479.

    Article  MATH  Google Scholar 

  7. Celletti, A., Falcolini, C., and Locatelli, U., 2004,On the break-down threshold of invariant tori in four dimensional maps. Regular Chaotic Dyn 9(3), 227–253.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Celletti, A., Froeschlé, C., and Lega, E., 2006,Dissipative and weakly–dissipative regimes in nearly integrable mappings. Discrete Cont. Dyn. Sys.—Series A 16(4), 757–781.

    Article  Google Scholar 

  9. Coddington, E. A., and Levinson, N., 1995, Theory of Ordinary Differential Equations, McGrawHill, New York.

    Google Scholar 

  10. Correia, A. C. M. and Laskar, J., 2004, Mercury’s capture into the 3/2 spin–orbit resonance as a result of its chaotic dynamics.Nature 429, 848–850.

    Article  ADS  Google Scholar 

  11. Darwin, G., 1908, Tidal friction and cosmogony, Scientific papers, Cambridge University Press 2.

    Google Scholar 

  12. D’Hoedt, S., and Lemaitre, A., 2004, The Spin-Orbit Resonant Rotation of Mercury: A Two Degree of Freedom Hamiltonian Model. Celest. Mech. Dyn. Astron. 89(3), 267–283.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Froeschlé, C., Guzzo M., and Lega, E., 2000, Graphical evolution of the Arnold’s web: From order to chaos. Science 289(5487), 2108–2110.

    Article  ADS  Google Scholar 

  14. Froeschlé, C., Lega E., and Gonczi, R., 1997, Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62.

    Article  MATH  ADS  Google Scholar 

  15. Goldreich, P., 1966, Final spin states of planets and satellites. Astron. J. 71(1), 1–7.

    Article  ADS  Google Scholar 

  16. Goldreich, P., and Peale, S., 1966, Spin–orbit coupling in the solar system. Astron. J. 71(6), 425–438.

    Article  ADS  Google Scholar 

  17. Guzzo, M., Lega E., and Froeschlé, C., 2002, On the numerical detection of the stability of chaotic motions in quasi–integrable systems. Physica D 163, 1–25.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Henrard, J., 1993, The adiabatic invariant in classical mechanics. Dyn. Rep. 2, new series, 117–235.

    Google Scholar 

  19. Hussmann, H., and Spohn, T., 2004, Thermal orbital evolution of Io and Europa. Icarus 171, 391–410.

    Article  ADS  Google Scholar 

  20. Kim, S. Y. and Lee, D. S., 1992, Transition to chaos in a dissipative standardlike map. Phys. Rev. A 45(8), 5480–5487.

    Article  ADS  MathSciNet  Google Scholar 

  21. Laskar, J., 1993, Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Physica D 67, 257–281.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Laskar, J., Froeschlé C., and Celletti, A., 1992, The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping. Physica D 56, 253–269.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lega, E., and Froeschl`e, C., 1996, Numerical investigations of the structure around an invariant KAM torus using the frequency map analysis. Physica D 95, 97–106.

    Article  MATH  MathSciNet  Google Scholar 

  24. MacDonald, G. J. F., 1964, Tidal friction. Rev. Geophys. 2, 467–541.

    Article  ADS  Google Scholar 

  25. Marzari, F., and Weidenschilling, S. J., 2002, Mean Motion Resonances, Gas Drag, and Supersonic Planetesimals in the Solar Nebula. Cel. Mech. Dyn. Astron. 82(3), 225–242.

    Article  MATH  ADS  Google Scholar 

  26. Peale, S. J., 2005, The free precession and libration of Mercury. Icarus 178, 4–18.

    Article  ADS  Google Scholar 

  27. Poincarè, H., 1892, Les Methodes Nouvelles de la Mechanique Celeste. Gauthier Villars, Paris.

    Google Scholar 

  28. Siegel, C., L., and Moser, J. K., 1971, Lectures on Celestial Mechanics. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  29. Schmidt, G., and Wang, B. W., 1985, Dissipative standard map. Phys. Rev. A 32(5), 2994–2999.

    Article  ADS  Google Scholar 

  30. Szebehely, V., 1967, Theory of orbits, Academic Press, New York and London.

    Google Scholar 

  31. Weidenschilling, S. J., and Jackson, A. A., 1993, Orbital resonances and Poynting-Robertson drag. Icarus 104(2), 244–254.

    Article  ADS  Google Scholar 

  32. Wenzel, W., Biham, O., and Jayaprakash, C., 1991, Periodic orbits in the dissipative standard map. Phys. Rev. A 43(12), 6550–6557.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Celletti, A. (2007). Weakly Dissipative Systems in Celestial Mechanics. In: Benest, D., Froeschle, C., Lega, E. (eds) Topics in Gravitational Dynamics. Lecture Notes in Physics, vol 729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72984-6_3

Download citation

Publish with us

Policies and ethics