Skip to main content

Diffusion in Hamiltonian Quasi-Integrable Systems

  • Chapter
Topics in Gravitational Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 729))

Abstract

The characterization of di?usion of orbits in Hamiltonian quasiintegrable systems is a relevant topic in dynamics. For quasi-integrable Hamiltonian systems a possible model for global di?usion, valid for perturbation larger than a critical value, was given by Chirikov; while for smaller perturbation the Nekhoroshev theorem leave the possibility of exponentially slow di?usion along a peculiar the Arnold’s web. We have studied this problem using a numerical approach. The aim of this chapter is to give the state of the art concerning the detection of slow Arnold’s di?usion in quasi-integrable Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V. I., 1963, Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surveys 18, 85–191.

    Article  ADS  Google Scholar 

  2. Arnold, V. I., 1963, Proof of a theorem by A.N. kolmogorov on the invariance of quasi-periodic motions under small perturbations of the hamiltonian. Russ. Math. Surv. 18(9).

    Google Scholar 

  3. Arnold, V. I., 1964, Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl. 6, 581–585.

    Google Scholar 

  4. Benettin, G., Fasso, F., and Guzzo, M., 2004, Long-term stability of proper rotations of the Euler perturbed rigid body. Commun. Math. Phys. 250,133–160.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Chirikov, B. V., 1979. Phys. Reports 52, 265.

    Article  ADS  MathSciNet  Google Scholar 

  6. Chirikov, B. V., Ford, J., and Vivaldi, F., 1979, Some numerical studies of Arnold diffusion in a simple model. In Month, M. and Herrera, J. C. (eds), Nonlinear Dynamics and the Beam-Beam interaction, American Institute of Physics.

    Google Scholar 

  7. Delshams, A., De La Llave, R., and Seara, T. M., 2003, A geometric mechanism for diffusion in hamiltonian systems overcoming the large gap problem: Announcement of results. ERA Am. Math. Soc. 9, 125–134.

    MATH  Google Scholar 

  8. Efthymiopoulos, C., Voglis, N., and Contopoulos, G., 1998, Diffusion and transient spectra in a 4-dimensional symplectic mapping. In Benest D. and Froeschlé, C. (eds), Analysis and Modeling of Discrete Dynamical Systems, Advances in Discrete mathematics and Applications, Gordon and Breach Science Publishers.

    Google Scholar 

  9. Froeschle, C., 1971, On the number of isolating integrals in systems with three degrees of freedom. Astrophys. Space Sci. 15, 110.

    Article  ADS  Google Scholar 

  10. Froeschle, C., 1972, Numerical study of a four-dimensional mapping. A&A 16, 172.

    ADS  MathSciNet  Google Scholar 

  11. Froeschle, C. and Scheidecker, J. P., 1973, On the disappearance of isolating integrals in systems with more than two degrees of freedom. Astrophys. Space Sci. 25, 373–386.

    Article  MATH  ADS  Google Scholar 

  12. Froeschle, C., Guzzo, M., and Lega, E., 2005, Local and global diffusion along resonant lines in discrete quasi–integrable dynamical systems. Celest. Mech. Dyn. Astron. 92, 243–255.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Froeschle, C., Lega, E., and Gonczi, R., 1997, Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Giordano, C. M. and Cincotta, P. M., 2004, Chaotic diffusion of orbits in systems with divided phase-space. A&A 423, 745–753.

    Article  ADS  Google Scholar 

  15. Guzzo, M. and Benettin, G., 2001. DCDS B.

    Google Scholar 

  16. Guzzo, M., Lega E., and Froeschle, C., 2002, On the numerical detection of the effective stability of chaotic motions in quasi–integrable systems. Physica D 163, 1–25.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Guzzo, M., Lega, E., and Froeschle, C., 2005, First numerical evidence of global Arnold diffusion in quasi–integrable systems. DCDS B 5, 687–698.

    Article  MATH  MathSciNet  Google Scholar 

  18. Guzzo, M., Lega, E., and Froeschle, C., 2006, Diffusion and stability in perturbed non-convex integrable systems. Nonlinearity 19, 1049–1067.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Guzzo, M. and Morbidelli, A., 1997, Construction of a Nekhoroshev like result for the asteroid belt dynamical system. Cel. Mech. Dyn. Astron. 66, 255–292.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Guzzo, M., 1999, Nekhoroshev stability of quasi–integrable degenerate Hamiltonian systems. Regular Chaotic Dyn. 4(2).

    Google Scholar 

  21. Guzzo, M., 2004, A direct proof of the Nekhoroshev theorem for nearly integrable sysmplectic maps. Annales Henry Poincare 5, 1013–1039.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Guzzo, M., 2005, The web of three-planet resonances in the outer Solar System. Icarus 174, 273–284.

    Article  ADS  Google Scholar 

  23. Guzzo, M., 2006, The web of three-planet resonances in the outer Solar System II: A source of orbital instability for Uranus and Neptune. Icarus 181,475–485.

    Article  ADS  Google Scholar 

  24. Kolmogorov, A. N., 1954, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSSR 98, 524.

    MathSciNet  Google Scholar 

  25. Kuksin, S. B., 1993, On the inclusion of an almost integrable analytic symplectomorphism into a hamiltonian flow. Russ. J. Math. Phys. 1, 191–207.

    MATH  MathSciNet  Google Scholar 

  26. Kuksin, S. B. and Poschel, J., 1994, On the inclusion of analytic symplectic maps in analytic hamiltonian flows and its applications. Nonlin. Differen. Equat. Appl. 12, 96–116.

    MathSciNet  Google Scholar 

  27. Laskar, J., 1993, Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Physica D 67, 257–281.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Lega, E., Guzzo, M., and Froeschle, C., 2003, Detection of Arnold diffusion in hamiltonian systems. Physica D 182, 179–187.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Lichtenberg, A. J. and Aswani, A. M., 1998, Arnold diffusion in many weakly coupled mappings. Physical Review E 57, 5325–5331.

    Article  ADS  Google Scholar 

  30. Lichtenberg, A. J. and Lieberman, M. A., 1983. Regular and Chaotic Dynamics, Springer-Verlag, New York.

    Google Scholar 

  31. Morbidelli, A. and Guzzo, M., 1997, The Nekhoroshev theorem and the asteroid belt dynamical system. Celest. Mech. Dyn. Astron. 65, 107–136.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Moser, J., 1958, On invariant curves of area-preserving maps of an annulus. Common Pure Appl. Math. 11, 81–114.

    Article  MATH  Google Scholar 

  33. Morbidelli, A., 2002. Modern Celestial Mechanics Advances in Astronomy and Astrophysics, Taylor and Francis, London.

    Google Scholar 

  34. Morbidelli, A. and Giorgilli, A., 1995, On a connection between KAM and Nekhoroshev’s theorems. Physica D 86, 514–516.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Nekhoroshev, N. N., 1977, Exponential estimates of the stability time of near-integrable hamiltonian systems. Russ. Math. Surveys 32, 1–65.

    Article  MATH  ADS  Google Scholar 

  36. Tennyson, J. L., Lieberman, M. A., and Lichtenberg, A. J., 1979, Diffusion in near-integrable hamiltonian systems with three degrees of freedom. In Month, M. and Herrera, J. C. (eds), Nonlinear Dynamics and the Beam-Beam interaction, American Institute of Physics.

    Google Scholar 

  37. Wood, B. P., Lichtenberg, A. J., and Lieberman, M. A., 1990, Arnold diffusion in weakly coupled standard map. Phys. Rev. A 42, 5885–5893.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lega, E., Froeschlé, C., Guzzo, M. (2007). Diffusion in Hamiltonian Quasi-Integrable Systems. In: Benest, D., Froeschle, C., Lega, E. (eds) Topics in Gravitational Dynamics. Lecture Notes in Physics, vol 729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72984-6_2

Download citation

Publish with us

Policies and ethics