Skip to main content

Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

This paper presents the comparison results on the performance of the Artificial Bee Colony (ABC) algorithm for constrained optimization problems. The ABC algorithm has been firstly proposed for unconstrained optimization problems and showed that it has superior performance on these kind of problems. In this paper, the ABC algorithm has been extended for solving constrained optimization problems and applied to a set of constrained problems .

Keywords

  • Particle Swarm Optimization
  • Constrain Optimization Problem
  • Objective Function Evaluation
  • Nectar Amount
  • Optimal Particle Swarm Optimization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

eBook
EUR   16.99
Price includes VAT (Finland)
  • ISBN: 978-3-540-72950-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   109.99
Price includes VAT (Finland)
  • ISBN: 978-3-540-72917-4
  • Dispatched in 3 to 5 business days
  • Exclusive offer for individuals only
  • Free shipping worldwide
    See shipping information.
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Method for Constrained Optimization Problems. In: Intelligent Technologies - Theory and Applications: New Trends in Intelligent Technologies, pp. 214–220. IOS Press, Amsterdam (2002)

    Google Scholar 

  2. Hedar, A.R., Fukushima, M.: Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization

    Google Scholar 

  3. Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation 4(1), 1–32 (1995)

    CrossRef  Google Scholar 

  4. Floudas, C.A., Pardalos, P.M. (eds.): A Collection of Test Problems for Constrained Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  5. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  6. Joines, J.A., Houck, C.R.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with gas. In: Proc. IEEE Int. Conf. Evol. Comp., pp. 579–585 (1994)

    Google Scholar 

  7. Hu, X., Eberhart, R.C.: Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics (2002)

    Google Scholar 

  8. Hu, X., Eberhart, R.C., Shi, Y.H.: Engineering optimization with particle swarm. In: IEEE Swarm Intelligence Symposium, pp. 53–57 (2003)

    Google Scholar 

  9. Parsopoulos, K.E., Vrahatis, M.N.: Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 582–591. Springer, Heidelberg (2005)

    Google Scholar 

  10. Zavala, A.E.M., Aguirre, A.H., Diharce, E.R.V.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO’05), pp. 209–216 (2005)

    Google Scholar 

  11. Karaboga, D.: An Idea Based On Honey Bee Swarm For Numerical Optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  12. Basturk, B., Karaboga, D.: An Artificial Bee Colony (ABC) Algorithm for Numeric function Optimization. In: IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA, May 12-14 (2006)

    Google Scholar 

  13. Goldberg, D.E., Deb, K.: A comparison of selection schemes used in genetic algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 69–93 (1991)

    Google Scholar 

  14. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  16. Zavala, A.E.M., Aguirre, A.H., Diharce, E.R.V.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO’05), pp. 209–216 (2005)

    Google Scholar 

  17. Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Karaboga, D., Basturk, B. (2007). Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)