Skip to main content

Fuzzy Classifier with Probabilistic IF-THEN Rules

  • Conference paper
  • 2908 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

The typical fuzzy classifier consists of rules each one describing one of the classes. This paper presents a new fuzzy classifier with probabilistic IF-THEN rules. A learning algorithm based on the gradient descent method is proposed to identify the probabilistic IF-THEN rules from the training data set. This new fuzzy classifier is finally applied to the well-known Wisconsin breast cancer classification problem, and a compact, interpretable and accurate probabilistic IF-THEN rule base is achieved.

Keywords

  • Membership Function
  • Fuzzy Rule
  • Fuzzy Model
  • Fuzzy Cluster
  • Fuzzy Entropy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, J.-S., Lee, C.S.G.: Self-adaptive neuro-fuzzy inference systems for classification applications. IEEE Transactions on Fuzzy Systems 10(6), 790–802 (2002)

    CrossRef  Google Scholar 

  2. Setnes, M., Roubos, H.: Ga-fuzzy modeling and classification: Complexity and performance. IEEE Transactions on Fuzzy Systems 8(5), 509–522 (2000)

    CrossRef  Google Scholar 

  3. Peña Reyes, C.A., Sipper, M.: A fuzzy-genetic approach to breast cancer diagnosis. Artificial Intelligence in Medicine 17, 131–155 (1999)

    CrossRef  Google Scholar 

  4. Setnes, M., Babuška, R.: Fuzzy relational classifier trained by fuzzy clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29(5), 619–625 (1999)

    CrossRef  Google Scholar 

  5. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 773–781 (1989)

    CrossRef  Google Scholar 

  6. Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24, 2195–2207 (2003)

    CrossRef  MATH  Google Scholar 

  7. Quinlan, J.R.: Improved use of continuous attributes in c4.5. J. Artificial Intell. Res. 4, 77–90 (1996)

    MATH  Google Scholar 

  8. Janos Abonyi, J.A., Szeifert, F.: Data-driven generation of compact, accurate,and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning 32, 1–21 (2003)

    CrossRef  MATH  Google Scholar 

  9. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., Michalkiewicz, E.L.: A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artificial Intelligence in Medicine 30, 27–48 (2004)

    CrossRef  Google Scholar 

  10. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artificial Intell. Med. 16, 149–169 (1999)

    CrossRef  Google Scholar 

  11. Ravi, V., Zimmermann, H.-J.: Fuzzy rule based classification with featureselector and modified threshold accepting. European Journal of Operational Research 123, 16–28 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Lee, H.-M., Chen, C.-M., Chen, J.-M., Jou, Y.-L.: An efficient fuzzy classifier with feature selection based on fuzzy entropy. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31(3), 426–432 (2001)

    CrossRef  Google Scholar 

  13. Setiono, R.: Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18, 205–219 (2000)

    CrossRef  Google Scholar 

  14. Meesad, P., Yen, G.G.: Combined numerical and linguistic knowledge representation and its application to medical diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 33(2), 206–222 (2003)

    CrossRef  Google Scholar 

  15. Tang, Y., Sun, S.: A Mixture Model of Classical Fuzzy Classifiers. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 616–621. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lv, H., Zhu, B., Tang, Y. (2007). Fuzzy Classifier with Probabilistic IF-THEN Rules. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics