Skip to main content

Using Gradual Numbers for Solving Fuzzy-Valued Combinatorial Optimization Problems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

In this paper a general approach to combinatorial optimization problems with fuzzy weights is discussed. The results, valid for the interval-valued problems, are extended to the fuzzy-valued ones by exploiting the very recent notion of a gradual number. Some methods for determining the exact degrees of possible and necessary optimality and the possibility distributions of deviations of solutions and elements are proposed. The introduced notions are illustrated by practical examples.

Keywords

  • Combinatorial Optimization Problem
  • Short Path Problem
  • Assignment Function
  • Possibility Distribution
  • Fuzzy Weight

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work was partially supported by Polish Committee for Scientific Research, grant 3T11C05430.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chanas, S., Zieliński, P.: The computational complexity of the criticality problems in a network with interval activity times. Eur. J. Oper. Res. 136, 541–550 (2002)

    CrossRef  MATH  Google Scholar 

  2. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncertainty. Plenum Press, New York (1988)

    MATH  Google Scholar 

  3. Dubois, D., Fargier, H., Galvagnon, V.: On latest starting times and floats in activity networks with ill-known durations. Eur. J. Oper. Res. 147, 266–280 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Dubois, D., Fargier, H., Fortin, J.: A generalized vertex method for computing with fuzzy intervals. In: Fuzz’IEEE, pp. 541–546 (2004)

    Google Scholar 

  5. Dubois, D., Prade, H.: Gradual Elements in a Fuzzy Set. Soft Comput., To appear

    Google Scholar 

  6. Fernandez-Baca, D., Slutzki, G., Eppstein, D.: Using sparsification for parametric minimum spanning tree problems. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 149–160. Springer, Heidelberg (1996)

    Google Scholar 

  7. Fortin, J., Zieliński, P., Dubois, D., Fargier, H.: Interval analysis in scheduling. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 226–240. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  8. Fortin, J., Dubois, D., Fargier, H.: Gradual Numbers and their Application to Fuzzy Interval Analysis. IEEE T. Fuzzy Syst., To appear

    Google Scholar 

  9. Kasperski, A., Zieliński, P.: On combinatorial optimization problems on matroids with uncertain weights. Eur. J. Oper. Res. 177, 851–864 (2007)

    CrossRef  MATH  Google Scholar 

  10. Moore, R.: Methods and applications of interval analysis. SIAM Studies in Applied Mathematics (1979)

    Google Scholar 

  11. Papadimitriou, C., Steiglitz, K.: Combinatorial optimization, algorithms and complexity. Dover Publications Inc., Mineola (1998)

    MATH  Google Scholar 

  12. Raghavan, S., Ball, M.O., Trichur, V.S.: Bicriteria product design optimization: An efficient solution procedure using AND/OR trees. Nav. Res. Log. 49, 574–592 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Young, N., Tarjan, R., Orlin, J.: Faster Parametric Shortest Path and Minimum Balance Algorithms. Networks 21, 205–221 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11(2), 298–313 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kasperski, A., Zieliński, P. (2007). Using Gradual Numbers for Solving Fuzzy-Valued Combinatorial Optimization Problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics