Skip to main content

Advances in the Geometrical Study of Rotation-Invariant T-Norms

  • Conference paper
  • 2902 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

T-norm properties for left-continuous, increasing [0,1]2→[0,1] functions can be fully described in terms of contour lines. For a left-continuous t-norm T, the rotation-invariance property comes down to the continuity of its contour line C 0. However, contour lines are inadequate to investigate the geometrical structure of these rotation-invariant t-norms. Enforced with the companion and zooms it is possible to totally reconstruct T by means of its contour line C 0 and its β-zoom, with β the unique fixpoint of C 0.

Keywords

  • Rotation-invariant t-norm
  • contour line
  • companion
  • zoom
  • associativity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esteva, F., Gispert, J., Godo, L., Montagna, F.: On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Studia Logica 71, 199–226 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Esteva, F., Godo, L.: Monoidal t-norm based fuzzy logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Fodor, J.: A new look at fuzzy connectives. Fuzzy Sets and Systems 57, 141–148 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  5. Jenei, S.: Geometry of left-continuous t-norms with strong induced negations. Belg. J. Oper. Res. Statist. Comput. Sci. 38, 5–16 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Jenei, S.: How to construct left-continuous triangular norms - state of the art. Fuzzy Sets and Systems 143, 27–45 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Jenei, S.: On the geometry of associativity. Semigroup Forum, to appear

    Google Scholar 

  8. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  9. Klement, E.P., Mesiar, R., Pap, E.: Different types of continuity of triangular norms revisited. New Mathematics and Natural Computation 1, 195–211 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Lianzhen, L., Kaitai, L.: Involutive monoidal t-norm based logic and R 0 logic. Internat. J. Intell. Systems 19, 491–497 (2004)

    CrossRef  MATH  Google Scholar 

  11. Maes, K.C., De Baets, B.: A contour view on uninorm properties. Kybernetika 42(3), 303–318 (2006)

    MathSciNet  Google Scholar 

  12. Maes, K.C., De Baets, B.: On the structure of left-continuous t-norms that have a continuous contour line. Fuzzy Sets and Systems, in press

    Google Scholar 

  13. Maes, K.C., De Baets, B.: The triple rotation method for constructing rotation-invariant t-norms. Fuzzy Sets and Systems, submitted

    Google Scholar 

  14. Novák, V.: On fuzzy type theory. Fuzzy Sets and Systems 149, 235–273 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Schweizer, B., Sklar, A.: Probabilistic metric spaces. Elsevier Science, New York (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Maes, K.C., De Baets, B. (2007). Advances in the Geometrical Study of Rotation-Invariant T-Norms. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics