Skip to main content

Features of Mathematical Theories in Formal Fuzzy Logic

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

A genuine fuzzy approach to fuzzy mathematics consists in constructing axiomatic theories over suitable systems of formal fuzzy logic. The features of formal fuzzy logics (esp. the invalidity of the law of contraction) entail certain differences in form between theories axiomatized in fuzzy logic and usual theories known from classical mathematics. This paper summarizes the most important differences and presents guidelines for constructing new theories, defining new notions, and proving new theorems in formal fuzzy mathematics.

Keywords

  • Formal fuzzy logic
  • axiomatic theories
  • the law of contraction
  • fuzzy mathematics
  • graded properties

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Běhounek, L., Cintula, P.: From fuzzy logic to fuzzy mathematics: A methodological manifesto. Fuzzy Sets and Systems 157(5), 642–646 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  3. Dubois, D., Prade, H. (eds.): Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets, vol. 7. Kluwer Academic Publishers, Boston (2000)

    MATH  Google Scholar 

  4. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  5. Běhounek, L., Bodenhofer, U., Cintula, P.: Relations in Fuzzy Class Theory: Initial steps. Submitted to Fuzzy Sets and Systems (2006)

    Google Scholar 

  6. Kroupa, T.: Filters in fuzzy class theory. Submitted (2006)

    Google Scholar 

  7. Běhounek, L.: Extensionality in graded properties of fuzzy relations. In: Proceedings of 11th IPMU Conference, pp. 1604–1611. Edition EDK, Paris (2006)

    Google Scholar 

  8. Běhounek, L.: On the difference between traditional and formal fuzzy logic. Submitted (2007)

    Google Scholar 

  9. Esteva, F., Godo, L.: Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124(3), 271–288 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Hájek, P., Cintula, P.: Triangular norm predicate fuzzy logics. To appear in Proceedings of Linz Seminar 2005 (2006)

    Google Scholar 

  11. Běhounek, L., Cintula, P.: Fuzzy class theory. Fuzzy Sets and Systems 154(1), 34–55 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Novák, V.: On fuzzy type theory. Fuzzy Sets and Systems 149(2), 235–273 (2004)

    CrossRef  Google Scholar 

  13. Běhounek, L., Cintula, P.: Fuzzy Class Theory: A primer v1.0. Technical Report V-939, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2006), Available at http://www.cs.cas.cz/research/library/reports_900.shtml

  14. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  15. Gottwald, S.: Fuzzy Sets and Fuzzy Logic: Foundations of Application—from a Mathematical Point of View. Vieweg, Wiesbaden (1993)

    MATH  Google Scholar 

  16. Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock (2001)

    MATH  Google Scholar 

  17. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. IFSR International Series on Systems Science and Engineering, vol. 20. Plenum Press, New York (2002)

    MATH  Google Scholar 

  18. Höhle, U.: Many Valued Topology and Its Applications. Kluwer, Boston (2001)

    MATH  Google Scholar 

  19. Höhle, U.: Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic. Fuzzy Sets and Systems 24(3), 263–278 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Cintula, P.: Weakly implicative (fuzzy) logics I: Basic properties. Archive for Mathematical Logic 45(6), 673–704 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Ying, M.: Fuzzy topology based on residuated lattice-valued logic. Acta Mathematica Sinica (English Series) 17, 89–102 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Valverde, L.: On the structure of F-indistinguishability operators. Fuzzy Sets and Systems 17(3), 313–328 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Bandler, W., Kohout, L.J.: On the universality of the triangle superproduct and the square product of relations. International Journal of General Systems 25, 399–403 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Běhounek, L., Cintula, P. (2007). Features of Mathematical Theories in Formal Fuzzy Logic. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics