Skip to main content

The Algebraic Properties of Linguistic Value “Truth” and Its Reasoning

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

From logic and algebra point of view, Computing with words is discussed in this paper. By analyzing the semantically ordering relation of linguistic variable Truth, orderings on linguistic hedges H and atomic evaluating syntagm Tr = {true, false} are obtained, respectively. Let H be finite chain, then Lukasiewicz product algebra of T = H×Tr of Truth is obtained, and term-set T(X) of Truth is embedded into an algebra Γ of type Δ = { ∨ , ∧ , ′,→ L }. In some cases, Γ can be applied in linguistic decision directly, also as truth domain of logic statements. Different with other truth domain, here truth values are linguistic terms rather than numerals (or symbolic).

Keywords

  • Fuzzy Logic
  • Linguistic Term
  • Algebraic Property
  • Information Granulation
  • Implication Algebra

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L.A.: Fuzzy logic = computing with words. Fuzzy Systems 4, 103–111 (1996)

    CrossRef  Google Scholar 

  2. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in houman reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 103–111 (1997)

    CrossRef  MathSciNet  Google Scholar 

  3. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical principles of fuzzy logic. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  4. Novák, V.: Antonyms and linguistic quantifiers in fuzzy logic. Fuzzy Sets and Systems 124, 335–351 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Dvořák, A., Novák, V.: Fromal theories and linguistic descriptions. Fuzzy Sets and Systems 143, 169–188 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Wang, P.P.: Computing with words. John Wiley and Sons, Chichester (2001)

    Google Scholar 

  7. Trillas, E.: On the use of words and fuzzy sets. Information Sciences 176, 1463–1487 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted information. IEEE Trans. System, Man, Cybernet. - Part A: Systems Humans 27, 646–656 (1997)

    CrossRef  Google Scholar 

  9. Herrera, F., Lopez, E., Rodriguez, M.A.: A linguistic decision model for promotion mix management solved with genetic algorithms. Fuzzy Sets and Systems 131, 47–61 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Pei, Z., Du, Y., Yi, L., Xu, Y.: Obtaining a complex linguistic data summaries from database based on a new linguistic aggregation operator. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 771–778. Springer, Heidelberg (2005)

    Google Scholar 

  11. Ho, N.C., Khang, T.D., Huynh, V.N.: An algebraic approach to linguistic hedges in Zadeh’s fuzzy logic. Fuzzy Sets and Systems 129, 229–254 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pei, Z. (2007). The Algebraic Properties of Linguistic Value “Truth” and Its Reasoning. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics