Skip to main content

A Fuzzy Hahn-Banach Theorem

  • Conference paper
  • 2892 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

A fuzzy version of the Hahn-Banach theorem is proved based on the classical result. A comparison is also drawn with an earlier published result in this connection.

Keywords

  • Analysis
  • Topology
  • L-seminormed spaces
  • Fuzzy extension theorems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachman, G., Narici, L.: Functional Analysis. Academic Press, New York (1966)

    MATH  Google Scholar 

  2. Dunford, N., Schwartz, J.T.: Linear Operators I. Wiley Interscience, Hoboken (1958)

    MATH  Google Scholar 

  3. Ghanim, M.H., Mashour, A.S.: Characterization of fuzzy topologies by s-neighbourhood systems. Fuzzy Sets and Systems 9, 211–213 (1983)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Katsaras, A.K., Liu, D.B.: Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces. J. Math. Anal. Appl. 58, 135–146 (1977)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Katsaras, A.K.: Fuzzy Topological Vector Spaces I. Fuzzy Sets and Systems 6, 85–95 (1981)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Katsaras, A.K.: Fuzzy Topological Vector Spaces II. Fuzzy Sets and Systems 12, 143–154 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Kelley, J.L., Namioka, I.: Linear Topological Spaces. Van Nostrand, Princeton (1963)

    MATH  Google Scholar 

  8. Rhie, G.S., Hwang, I.A.: On the fuzzy Hahn-Banach Theorem - an analytic form. Fuzzy Sets and Systems 108, 117–121 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Taylor, A.E.: Introduction to Functional Analysis. Wiley, Hoboken (1958)

    MATH  Google Scholar 

  10. Warren, R.H.: Fuzzy topologies characterized by neighbourhood systems. Rocky Mountain Journal of Mathematics 9(4), 761–764 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kotzé, W., Pinchuck, A. (2007). A Fuzzy Hahn-Banach Theorem. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics