Skip to main content

On Selecting an Algorithm for Fuzzy Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

Formulations for fuzzy and possibilistic optimization abound in the literature, but few are implemented in practice. This paper investigates the theory, semantics, and efficacy of a selection of significant fuzzy and possibilistic optimization algorithms via their application to a well-known large-scale problem: the radiation therapy planning problem. The algorithms are compared, critiqued, and organized with the following objective in mind: to guide a decision maker in the selection and implementation of a fuzzy or possibilistic optimization algorithm.

Keywords

  • Fuzzy
  • Possibilistic
  • Optimization
  • Algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management Science 17(4), 141–164 (1970)

    MathSciNet  Google Scholar 

  2. Dubois, D.: Linear programming with fuzzy data. In: Bezdek, J.C. (ed.) Analysis of Fuzzy Information, vol III: Applications in Engineering and Science, pp. 241–263. CRC Press, Boca Raton (1987)

    Google Scholar 

  3. Dubois, D., Prade, H.: Systems of linear fuzzy constraints. Fuzzy Sets and Systems 3, 37–48 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Dubois, D., Prade, H.: Fuzzy numbers: An overview. In: Bezdek, J.C. (ed.) Analysis of Fuzzy Information, vol. I: Mathematics and Logic, pp. 3–39. CRC Press, Boca Raton (1987)

    Google Scholar 

  5. Holder, A., Salter, B.: A tutorial on radiation oncology and optimization. In: Greenberg, H. (ed.) Tutorials on Emerging Methodologies and Application in Operations Research (2004)

    Google Scholar 

  6. Inuiguchi, M., Ichihashi, H., Tanaka, H.: Fuzzy programming: A survey of recent developments. In: Slowinski, R., Teghem, J. (eds.) Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programmin under Uncertainty, pp. 45–68. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  7. Jamison, K., Lodwick, W.: Fuzzy linear programming using a penalty method. Fuzzy Sets and Systems 119, 97–110 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Lai, Y., Hwang, C.: Fuzzy Mathematical Programming. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Lodwick, W.: Personal communication (June 2006)

    Google Scholar 

  10. Lodwick, W., Bachman, K.: Solving large-scale fuzzy and possibilistic optimization problems. Fuzzy Optimization and Decision Making 4, 257–278 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Lodwick, W., Jamison, K.: A computational method for fuzzy optimization. In: Ayyub, B., Bilal, G. (eds.) Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  12. Lodwick, W., Jamison, K.D.: Theory and semantics for fuzzy and possibilistic optimization. In: IFSA (2005)

    Google Scholar 

  13. Lodwick, W., Neumaier, A., Newman, F.: Optimization under uncertainty: Methods and applications in radiation therapy. In: Proc. 10th Intl. Conference on Fuzzy Systems, vol. 3, pp. 1219–1222 (2001)

    Google Scholar 

  14. Lodwick, W.A.: Analyis of structure in fuzzy linear programs. Fuzzy Sets and Systems 38, 15–26 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Luhandjula, M.K.: On possibilistic linear programming. Fuzzy Sets and Systems 18, 15–30 (1986)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Vila, M.A., Delgado, M., Verdegay, J.L.: A general model for fuzzy linear programming. In: Fuzzy Sets and Systems, pp. 21–29 (1989)

    Google Scholar 

  17. Morrison, T.: Personal communication (July 2006)

    Google Scholar 

  18. Negoita, C.V.: The current interest in fuzzy optimization. Fuzzy Sets and Systems 6, 261–269 (1981)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Negoita, C.V., Sularia, M.: On fuzzy mathematical programming and tolerances in planning. Economic Computation and Economic Cybernetics Studies and Research 3(31), 3–14 (1976)

    MathSciNet  Google Scholar 

  20. Neumaier, A.: Fuzzy modeling in terms of surprise. Fuzzy Sets and Systems 135, 21–35 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Ralescu, D.: Inexact solutions for large-scale control problems. In: Proceedings of the first international congress on math at the service of man (1977)

    Google Scholar 

  22. Ramik, J., Rimanek, J.: Inequality relation between fuzzy numbers and it’s use in fuzzy optimization. In: Fuzzy Sets and Systems, pp. 123–138 (1985)

    Google Scholar 

  23. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research 21, 1154–1157 (1973)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Soyster, A.L.: A duality theory for convex programming with set-inclusive constraints. Operations Research 22, 892–898 (1974)

    MATH  MathSciNet  Google Scholar 

  25. Soyster, A.L.: Erratum. Operations Research 22, 1279–1280 (1974)

    MATH  MathSciNet  Google Scholar 

  26. Tanaka, H., Asai, K.: Fuzzy linear programming with fuzzy numbers. Fuzzy Sets and Systems 13, 1–10 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. Tanaka, H., Ichahashi, H., Asai, K.: A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers. Control and Cybernetics 13(3) (1984)

    Google Scholar 

  28. Tanaka, H., Ichihashi, H., Asai, K.: Fuzzy decision in linear programming with trapezoid fuzzy parameters. In: Kacpryzk, J., Yager, R.R. (eds.) Management Decision Suppot Systems Using Fuzzy Sets and Possibility Theory, pp. 146–154. Verlag TÜV, Köln (1985)

    Google Scholar 

  29. Tanaka, H., Okuda, T., Asai, K.: On fuzzy-mathematical programming. J. of Cybernetics 3(4), 37–46 (1974)

    CrossRef  MathSciNet  Google Scholar 

  30. Verdegay, J.L.: Fuzzy Mathematical Programming, pp. 231–237. North-Holland, Amsterdam (1982)

    Google Scholar 

  31. Yager, R.R.: A procedure for odering fuzzy subsets of the unit interval. Information Sciences 24, 143–161 (1981)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - i. Information Sciences 8, 199–249 (1975)

    CrossRef  MathSciNet  Google Scholar 

  34. Zimmermann, H.-J.: Description and optimization of fuzzy systems. International J. of General Systems 2, 209–215 (1976)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Untiedt, E., Lodwick, W. (2007). On Selecting an Algorithm for Fuzzy Optimization. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics