Skip to main content

Web Usage Mining Via Fuzzy Logic Techniques

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

With the increment of users and information on the Web, mining processes inspired in the traditional data mining ones have been developed. This new recent area of investigation is called Web Mining. Within this area, we study the analysis of web log files in what is called Web Usage Mining. Different techniques of mining to discover usage patterns from web data can be applied in Web Usage Mining. We will also study in a more detailed way applications of Fuzzy Logic in this area. Specially, we apply fuzzy association rules to web log files, and we give initial traces about the application of Fuzzy Logic to personalization and user profile construction.

Keywords

  • Web Usage Mining
  • Fuzzy Logic
  • Fuzzy Association Rules
  • Personalization
  • User Profiles

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD Conference, pp. 207–216 (1993)

    Google Scholar 

  2. Arotaritei, D., Mitra, S.: Web Mining: a survey in the fuzzy framework. Fuzzy Sets and Systems (2000)

    Google Scholar 

  3. Au, W.H., Chan, K.C.C.: An effective algorithm for discovering fuzzy rules in relational databases. In: Proc. of IEEE International Conference on Fuzzy Systems, vol. II, pp. 1314–1319 (1998)

    Google Scholar 

  4. Carbonell, J., Carven, M., Fienberg, S., Mitchell, T., Yang, Y.: Report on the conald workshop on learning from text and the web. In: CONALD Workshop on Learning from Text and The Web (June 1998)

    Google Scholar 

  5. Cernuzzi, L., Molas, M.L.: Integrando diferentes Técnicas de Data Mining en procesos de Web Usage Mining (2003)

    Google Scholar 

  6. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Grouping Web Page References into Transactions for Mining World Wide Web Browsing Patterns, 1–11 (2000)

    Google Scholar 

  7. Chakrabati, S.: Data Mining for hypertext: A tutorial survey. ACM SIGKDD Explorations 1(2), 1–11 (2000)

    CrossRef  Google Scholar 

  8. Delgado, M., Sánchez, D., Vila, M.A.: Fuzzy cardinality based evaluation of quantified sentences. Int. J. Aprox.Reasoning 3, 23 (2000)

    CrossRef  Google Scholar 

  9. Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.-A.: Mining text data: Special features and patterns. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 140–153. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  10. Delgado, M., Marín, N., Sánchez, D., Vila, M.A.: Fuzzy Association Rules: General Model and Applications. IEEE Transactions on Fuzzy Systems 11, 214–225 (2003)

    CrossRef  Google Scholar 

  11. ECML/PKDD Conference 2005 Web Site, Porto, Portugal (2005), http://ecmlpkdd05.liacc.up.pt/

  12. Etzioni, O.: The World Wide Web: Quagmire or gold mine. Comunications of the ACM 39, 65–68 (1996)

    CrossRef  Google Scholar 

  13. Garofalakis, M.N., Rastogi, R., Seshadri, S., Shim, K.: Data Mining and the web: Past, present nad future. In: WorkShop on Web Information and Data Managament, pp. 43–47 (1999)

    Google Scholar 

  14. Hong, T.P., Kuo, C.S., Chi, S.C.: Mining association rules from quantitative data. Intelligent Data Analysis 3, 363–376 (1999)

    CrossRef  MATH  Google Scholar 

  15. Justicia, C., Martín-Bautista, M.J., Sánchez, D.: Minería de textos: Aplicaciones con lógica difusa (In Spanish). Actas del Congreso Español de Tecnologías con Lógica Difusa, Jaén (2004)

    Google Scholar 

  16. Kleinberg, J.M., Kumar, R., Raghavan, P.: The Web as a graph: measurements, models, and methods. In: Proceedings of the Fifth Annual International Computing and Combinatorics Conference (1999)

    Google Scholar 

  17. Kraft, D.H., Martín-Bautista, M.J., Chen, J., Vila, M.A.: Rules and fuzzy rules in text: concept, extraction and usage. International Journal of Approximate Reasoning 34, 145–161 (2003)

    CrossRef  MATH  Google Scholar 

  18. Kuok, C.-M., Fu, A., Wong, M.H.: Mining fuzzy association rules in databases. SIGMOD Record 27(1), 41–46 (1998)

    CrossRef  Google Scholar 

  19. Lee, J.H., Kwang, H.L.: An extension of association rules using fuzzy sets. In: Proc. of IFSA’97, Prague, Czech Republic (1997)

    Google Scholar 

  20. Martí-Bautista, M.J., Kraft, D.H., Vila, M.A., Chen, J., Cruz, J.: User profiles and fuzzy logic for Web retrieval issues. Soft Computing Journal 6(5), 365–372 (2004)

    Google Scholar 

  21. Mitra, S., Pal, S.K.: Data Mining in Soft Computing Framework: A Survey. IEEE Transactions on Neural Networks, 3–14 (2002)

    Google Scholar 

  22. Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) Practical Handbook of Internet Computing, CRC Press LLC, Boca Raton (2005)

    Google Scholar 

  23. Nasraoui, O., Frigui, H., Joshi, A., Krishnappuram, R.: Mining Web accses logs using relational competitive fuzzy clustering. In: Proceedings of springs Symposium On Natural Language Proccesing Form the www, Stanford, California (March 1997)

    Google Scholar 

  24. Wong, C., Shiu, S., Pal, S.: Mining Fuzzy Association Rules for Web Access Case Adaptation. In: Workshop Proceedings of Soft Computing in Case-Based Reasoning Workshop, in conjunction with the 4th International Conference in Case-Based Reasoning, Vancouver, Canada, pp. 213–220 (2001)

    Google Scholar 

  25. Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning I. Information Sciences 8, 199–251 (1975)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Escobar-Jeria, V.H., Martín-Bautista, M.J., Sánchez, D., Vila, MA. (2007). Web Usage Mining Via Fuzzy Logic Techniques. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics