Skip to main content

Testing Stochastic Arithmetic and CESTAC Method Via Polynomial Computation

  • Conference paper
  • 2904 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

The CESTAC method and its implementation known as CADNA software have been created to estimate the accuracy of the solution of real life problems when these solutions are obtained from numerical methods implemented on a computer. The method takes into account uncertainties on data and round-off errors. On another hand a theoretical model for this method in which operands are gaussian variables called stochastic numbers has been developed. In this paper numerical examples based on the Lagrange polynomial interpolation and polynomial computation have been constructed in order to demonstrate the consistency between the CESTAC method and the theory of stochastic numbers. Comparisons with the interval approach are visualized.

Keywords

  • Arithmetic Operation
  • Interval Arithmetic
  • Real Life Problem
  • Interval Approach
  • Granular Computing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, R., Lamotte, J.-L., Markov, S.: Abstract structures in stochastic arithmetic. In: Bouchon-Meunier, B., Yager, R.R. (eds.) Proc. 11-th Conference on Information Processing and Management of Uncertainties in Knowledge-based Systems (IPMU 2006), pp. 794–801. Editions EDK, Paris (2006)

    Google Scholar 

  2. Alt, R., Vignes, J.: Validation of Results of Collocation Methods for ODEs with the CADNA Library. Appl. Numer. Math. 20, 1–21 (1996)

    CrossRef  MathSciNet  Google Scholar 

  3. Chesneaux, J.M., Vignes, J.: Vignes, Les fondements de l’arithmétique stochastique. C.R. Acad. Sci., Paris, Sér. I, Math. 315, 1435–1440 (1992)

    MATH  MathSciNet  Google Scholar 

  4. Delay, F., Lamotte, J.-L.: Numerical simulations of geological reservoirs : improving their conditioning through the use of entropy. Mathematics and Computers in Simulation 52, 311–320 (2000)

    CrossRef  Google Scholar 

  5. INTLAB—INTerval LABoratory V. 5.2, http://www.ti3.tu-harburg.de/~rump/intlab/

  6. Lamotte, J.L., Epelboin, Y.: Study of the numerical stability of a X-RAY diffraction model. In: Computational Engineering in Systems Applications, CESA’98 IMACS Multiconference, Nabeul-Hammamet, Tunisia, vol. 1, pp. 916–919 (1998)

    Google Scholar 

  7. Markov, S., Alt, R.: Stochastic arithmetic: Addition and Multiplication by Scalars. Appl. Numer. Math. 50, 475–488 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Markov, S., Alt, R., Lamotte, J.-L.: Stochastic Arithmetic: S-spaces and Some Applications. Numer. Algorithms 37(1–4), 275–284 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Rokne, J.G.: Interval arithmetic and interval analysis: an introduction. In: Granular computing: an emerging paradigm, pp. 1–22. Physica-Verlag GmbH, Heidelberg (2001)

    Google Scholar 

  10. Toutounian, F.: The use of the CADNA library for validating the numerical results of the hybrid GMRES algorithm. Appl. Numer. Math. 23, 275–289 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Toutounian, F.: The stable A T A-orthogonal s-step Orthomin(k) algorithm with the CADNA library. Numer. Algo. 17, 105–119 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Vignes, J., Alt, R.: An Efficient Stochastic Method for Round-Off Error Analysis. In: Miranker, W.L., Toupin, R.A. (eds.) Accurate Scientific Computations. LNCS, vol. 235, pp. 183–205. Springer, Heidelberg (1986)

    Google Scholar 

  13. Vignes, J.: Review on Stochastic Approach to Round-Off Error Analysis and its Applications. Math. and Comp. in Sim. 30(6), 481–491 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Vignes, J.: A Stochastic Arithmetic for Reliable Scientific Computation. Math. and Comp. in Sim. 35, 233–261 (1993)

    CrossRef  MathSciNet  Google Scholar 

  15. Yao, Y.Y.: Granular Computing: basic issues and possible solutions. In: Wang, P.P. (ed.) Proc. of the 5-th Joint Conference on Information Sciences, vol. I, Atlantic City, New Jersey, USA, February 27-March 3, 2000, pp. 186–189. Association for Intelligent Machinery (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Alt, R., Lamotte, JL., Markov, S. (2007). Testing Stochastic Arithmetic and CESTAC Method Via Polynomial Computation. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics