Skip to main content

Towards Vague Query Answering in Logic Programming for Logic-Based Information Retrieval

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

We address a novel issue for logic programming, namely the problem of evaluating ranked top-k queries. The problem occurs for instance, when we allow queries such as “find cheap hotels close to the conference location” in which vague predicates like cheap and close occur. Vague predicates have the effect that each tuple in the answer set has now a score in [0,1]. We show how to compute the top-k answers in case the set of facts is huge, without evaluating all the tuples.

Keywords

  • Logic Programming
  • Fuzzy
  • Top-k retrieval

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificial Intelligence 32(1-4), 35–66 (2001)

    CrossRef  MathSciNet  Google Scholar 

  3. Fagin, R.: Combining fuzzy information: an overview. SIGMOD Rec. 31(2), 109–118 (2002)

    CrossRef  Google Scholar 

  4. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. In: VLDB-03, pp. 754–765 (2003)

    Google Scholar 

  5. Kiferand, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)

    CrossRef  MathSciNet  Google Scholar 

  6. Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization for relational top-k queries. In: SIGMOD-05, pp. 131–142. ACM Press, New York (2005)

    CrossRef  Google Scholar 

  7. Li, C., Chang, K.C.-C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In: SIGMOD-06, ACM Press, New York (2006)

    Google Scholar 

  8. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. Journal of the ACM 48(5), 909–970 (2001)

    CrossRef  MathSciNet  Google Scholar 

  9. Straccia, U.: Query answering in normal logic programs under uncertainty. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 687–700. Springer, Heidelberg (2005)

    Google Scholar 

  10. Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU-06 (2006)

    Google Scholar 

  11. Straccia, U.: Towards top-k query answering in deductive databases. In: Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics (SMC-06), IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  12. Straccia, U.: Towards top-k query answering in description logics: The case of DL-Lite. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 439–451. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  13. Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Vojtáš, P.: Fuzzy logic aggregation for semantic web search for the best (top-k) answer. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, pp. 341–359. Elsevier, Amsterdam (2006)

    Google Scholar 

  15. Warren, D.S.: Memoing for logic programs. Commun. ACM 35(3), 93–111 (1992)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Straccia, U. (2007). Towards Vague Query Answering in Logic Programming for Logic-Based Information Retrieval. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics