Skip to main content

Representation of Rough Sets Based on Intuitionistic Fuzzy Special Sets

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

Intuitionistic fuzzy special sets is a special case of intuitionistic fuzzy sets. In this paper, under the framework of information systems, the relationship between intuitionistic fuzzy special sets and rough sets is analyzed. Based on basic intuitionistic fuzzy special sets of information systems, intuitionistic fuzzy special σ-algebra are generated, and rough sets are embedded in the intuitionistic fuzzy special σ-algebra. Naturally, distances (e.g., Hamming distance or Euclidean distance) of intuitionistic fuzzy special sets in intuitionistic fuzzy special σ-algebra can be used to evaluate predication rules of information systems which is an important subject of rough set theory.

Keywords

  • Decision Attribute
  • Print Circuit Board Assembly
  • Decision Information System
  • Fuzzy Complementation
  • Nonmembership Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanassov, K.T.: Two theorems for intuitionistic fuzzy sets. Fuzzy Sets and Systems 110, 267–269 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. De, S.K., Biswas, R., Roy, A.R.: Some operations on intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 477–484 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Bustince, H., Kacprzyk, J., Mohedano, V.: Fuzzy generators application to intuitionistic fuzzy complementation. Fuzzy Sets and System 114, 485–504 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Coskun, E.: Systems on intuitionistic fuzzy special sets and intuitionistic fuzzy special measures. Information Sciences 128, 105–118 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118, 467–477 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Davvaz, B., Dudek, W.A., Jun, Y.B.: Intuitionistic fuzzy H v -submodules. Information Sciences 176, 285–300 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Mondal, T.K., Samanta, S.K.: On intuitionistic gradation of openness. Fuzzy Sets and Systems 131, 323–336 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Grzegorzewski, P., Mrowka, E.: Some notes on (Atanassov’s) intuitionistic fuzzy sets. Fuzzy Sets and Systems 156, 492–495 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133, 227–235 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Wang, G.J., Tic, Y.Y.: Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy Sets and Systems 110, 271–278 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Science 11(5), 341–356 (1982)

    CrossRef  MathSciNet  Google Scholar 

  12. Duntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 109–137 (1998)

    CrossRef  MathSciNet  Google Scholar 

  13. Pei, Z., Qin, K.Y.: intuitionistic fuzzy special set expression of rough set and its application in reduction of attributes. Pattern Recognition and Artificial Intelligence 17(3), 262–268 (2004)

    Google Scholar 

  14. Gregori, V., Romaguera, S., Veeramani, P.: A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 28, 902–905 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Li, D.F.: Some measures of dissimilarity in intuitionistic fuzzy structures. Journal of Computer and System Sciences 68, 115–122 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Li, D.F.: Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences 70, 73–85 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Wang, W., Xin, X.L.: Distance measure between intuitionistic fuzzy sets. Pattern Recognition Letters 26, 2063–2069 (2005)

    CrossRef  Google Scholar 

  19. Liang, Z.Z., Shi, P.F.: Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters 24, 2687–2693 (2003)

    CrossRef  MATH  Google Scholar 

  20. Shu, M.H., Cheng, C.H., Chang, J.R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectronics Reliability, in press (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pei, Z., Zhang, L., Chen, H. (2007). Representation of Rough Sets Based on Intuitionistic Fuzzy Special Sets. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics