Abstract
Computing statistics is important. Traditional data processing in science and engineering starts with computing the basic statistical characteristics such as the population mean and population variance:
Keywords
- Practical Situation
- Interval Uncertainty
- Term Versus
- Computing Versus
- Fuzzy Interval
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Dantsin, E., Kreinovich, V., Wolpert, A., Xiang, G.: Population Variance under Interval Uncertainty: A New Algorithm. Reliable Computing 12(4), 273–280 (2006)
Dubois, D., Fargier, H., Fortin, J.: The empirical variance of a set of fuzzy intervals. In: Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’2005, Reno, Nevada, May 22–25, 2005, pp. 885–890 (2005)
Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River (1995)
Kreinovich, V., Longpré, L., Starks, S.A., Xiang, G., Beck, J., Kandathi, R., Nayak, A., Ferson, S., Hajagos, J.: Interval Versions of Statistical Techniques, with Applications to Environmental Analysis, Bioinformatics, and Privacy in Statistical Databases. Journal of Computational and Applied Mathematics 199(2), 418–423 (2007)
Kreinovich, V., Xiang, G., Starks, S.A., Longpre, L., Ceberio, M., Araiza, R., Beck, J., Kandathi, R., Nayak, A., Torres, R., Hajagos, J.: Towards combining probabilistic and interval uncertainty in engineering calculations: algorithms for computing statistics under interval uncertainty, and their computational complexity. Reliable Computing 12(6), 471–501 (2006)
Nguyen, H.T., Walker, E.A.: A first course in fuzzy logic. CRC Press, Boca Raton (2005)
Rabinovich, S.: Measurement Errors and Uncertainties: Theory and Practice. Springer, New York (2005)
Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, New York (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Xiang, G., Kreinovich, V. (2007). Estimating Variance Under Interval and Fuzzy Uncertainty: Case of Hierarchical Estimation. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-72950-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72917-4
Online ISBN: 978-3-540-72950-1
eBook Packages: Computer ScienceComputer Science (R0)
