Skip to main content

Estimating Variance Under Interval and Fuzzy Uncertainty: Case of Hierarchical Estimation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4529)

Abstract

Computing statistics is important. Traditional data processing in science and engineering starts with computing the basic statistical characteristics such as the population mean and population variance:

$$E=\displaystyle\frac{1}{n}\cdot \sum\limits_{i=1}^n x_i\ \ V=\displaystyle\frac{1}{n}\cdot \sum\limits_{i=1}^n (x_i-E)^2.$$

Keywords

  • Practical Situation
  • Interval Uncertainty
  • Term Versus
  • Computing Versus
  • Fuzzy Interval

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dantsin, E., Kreinovich, V., Wolpert, A., Xiang, G.: Population Variance under Interval Uncertainty: A New Algorithm. Reliable Computing 12(4), 273–280 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Dubois, D., Fargier, H., Fortin, J.: The empirical variance of a set of fuzzy intervals. In: Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’2005, Reno, Nevada, May 22–25, 2005, pp. 885–890 (2005)

    Google Scholar 

  3. Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  4. Kreinovich, V., Longpré, L., Starks, S.A., Xiang, G., Beck, J., Kandathi, R., Nayak, A., Ferson, S., Hajagos, J.: Interval Versions of Statistical Techniques, with Applications to Environmental Analysis, Bioinformatics, and Privacy in Statistical Databases. Journal of Computational and Applied Mathematics 199(2), 418–423 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Kreinovich, V., Xiang, G., Starks, S.A., Longpre, L., Ceberio, M., Araiza, R., Beck, J., Kandathi, R., Nayak, A., Torres, R., Hajagos, J.: Towards combining probabilistic and interval uncertainty in engineering calculations: algorithms for computing statistics under interval uncertainty, and their computational complexity. Reliable Computing 12(6), 471–501 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Nguyen, H.T., Walker, E.A.: A first course in fuzzy logic. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  7. Rabinovich, S.: Measurement Errors and Uncertainties: Theory and Practice. Springer, New York (2005)

    Google Scholar 

  8. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Xiang, G., Kreinovich, V. (2007). Estimating Variance Under Interval and Fuzzy Uncertainty: Case of Hierarchical Estimation. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics