Skip to main content

HIROIMONO Is NP-Complete

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4475)

Abstract

In a Hiroimono puzzle, one must collect a set of stones from a square grid, moving along grid lines, picking up stones as one encounters them, and changing direction only when one picks up a stone. We show that deciding the solvability of such puzzles is NP-complete.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-72914-3_5
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-72914-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costello, M.J.: The greatest puzzles of all time. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  2. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approximate. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 351–363. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  3. Kaye, R.: Minesweeper is NP-complete. Mathematical Intelligencer 22, 9–15 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Culberson, J.: Sokoban is PSPACE-complete. In: Proceedings of the International Conference on Fun with Algorithms, Carleton Scientific, pp. 65–76 (1998)

    Google Scholar 

  5. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 86, 1052–1060 (2003)

    Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co, New York (1979)

    MATH  Google Scholar 

  7. Andersson, D.: Reduce 3-SAT to HIROIMONO, http://purl.org/net/koda/s2h.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Andersson, D. (2007). HIROIMONO Is NP-Complete. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds) Fun with Algorithms. FUN 2007. Lecture Notes in Computer Science, vol 4475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72914-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72914-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72913-6

  • Online ISBN: 978-3-540-72914-3

  • eBook Packages: Computer ScienceComputer Science (R0)