Skip to main content

Volumetric Analysis of the Heart Using Echocardiography

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4466)

Abstract

This paper presents a volumetric cardiac analysis and movement reconstruction algorithm from echocardiographic image sequences and electrocardiography (ECG) records. The method consists of two-dimensional (2-D) echocardiogram transformation, shape detection, heart wall movement identification, volumetric analysis and 4-D model construction. Although the semi-periodic behavior of the ECG and the breath caused heart rate variance disturbs spatial and temporal reconstruction, the presented algorithm is able to overcome these problems in most cases for normal and ventricular beats. The obtained model provides a tool to investigate volumetric variance of the heart and the phenomenon of normal and abnormal heart beating that makes possible to explore continuously the heart’s inner structure.

Keywords

  • echocardiography
  • sequence analysis
  • QRS clustering
  • volumetric analysis
  • 3-D active appearance model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-72907-5_9
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-72907-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelini, E.D., Laine, A.F., Takuma, S., Holmes, J.W., Homma, S.: LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography. IEEE Trans. Med. Imag. 20, 457–469 (2001)

    CrossRef  Google Scholar 

  2. Belohlavek, M., Manduca, A., Behrenbeck, T., Seward, J., Greenleaf, J.F.: Image analysis using modified self-organizing maps: automated delineation of the left ventricular cavity in serial echocardiograms. In: Proc. Visual. Biomed. Comp. Conf. pp. 247–252 (1996)

    Google Scholar 

  3. Benjamin, E.J., Levy, D.: Why is left ventricular hypertrophy so predictive of morbidity and mortality? Am. J. Med. Sci. 317, 168–175 (1999)

    CrossRef  Google Scholar 

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Patt. Anal. Mach. Intell. 14, 239–256 (1992)

    CrossRef  Google Scholar 

  5. Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.C.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imag. 21, 1374–1383 (2002)

    CrossRef  Google Scholar 

  6. Brotherton, T., Pollard, T., Simpson, P., DeMaria, A.: Echocardiogram structure and tissue classification using hierarchical fuzzy neural networks. In: Proc. IEEE Conf. Acoustics Speech Sign. Proc. 2, pp. 573–576 (1994)

    Google Scholar 

  7. Chalana, V., Linker, D.T., Haynor, D.R., Kim, Y.: A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans. Med. Imag. 15, 290–298 (1996)

    CrossRef  Google Scholar 

  8. Cootes, T.F., Edwards, G.J., Taylor, C.J: Active appearance models. IEEE Trans. Patt. Anal. Mach. Intell 23, 681–685 (2001)

    CrossRef  Google Scholar 

  9. Dias, J.M.B., Leitão, J.M.N.: Wall position and thickness estimation from sequences of echocardiographic images. IEEE Trans. Med. Imag. 15, 25–38 (1996)

    CrossRef  Google Scholar 

  10. Duncan, J.S., Ayache, N.: Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans. Patt. Anal. Mach. Intell. 22, 85–105 (2000)

    CrossRef  Google Scholar 

  11. Evans, A.N., Nixon, M.S.: Biased motion-adaptive temporal filtering for speckle reduction in echocardiography. IEEE Trans. Med. Imag. 15, 39–50 (1996)

    CrossRef  Google Scholar 

  12. Geiser, E.A., Wilson, D.C., Wang, D.X., Conetta, D.A., Murphy, J.D., Hutson, A.D: Autonomous epicardial and endocardial boundary detection in echocardiographic shor-axis images. J. Amer. Soc. Echocardiogr. 11, 338–348 (1998)

    CrossRef  Google Scholar 

  13. Haider, A.W., Larson, M.G., Benjamin, E.J., Levy, D.: Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J. Am. Coll. Cardiol. 32, 1454–1459 (1998)

    CrossRef  Google Scholar 

  14. Issenberg, S.B., Gordon, M.S., Gordon, D.L., Safford, R.E., Hart, I.R.: Simulation and new learning technologies. Med. Teach 23, 16–23 (2001)

    CrossRef  Google Scholar 

  15. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sörnmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)

    CrossRef  Google Scholar 

  16. Lelieveldt, B.P.F., van der Geest, R.J., Mitchell, S.C., Bosch, J.G., Sonka, M., Reiber, J.H.C.: 3-D active appearance models: fully automatic detection of endo- and epicardial contours in short-axis cardiac MR data. In: Proc. Int. Soc. Magn. Res. Med. (ISMRM) vol. 2 , p. 1668 (2002)

    Google Scholar 

  17. MacLeod, R.S., Brooks, D.H.: Recent progress in inverse problems in echocardiology. IEEE EMBS Mag. 17(5), 73–83 (1998)

    CrossRef  Google Scholar 

  18. Mitchell, S.C., Lelieveldt, B.P.F., Bosch, J.G., van der Geest, R.J., Reiber, J.H.C., Sonka, M.: Segmentation of cardiac MR volume data using 3D active appearance models. In: Proc. SPIE Med. Imag. pp. 433–443 (2002)

    Google Scholar 

  19. Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C., Sonka, M.: 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans. Med. Imag. 21, 1167–1178 (2002)

    CrossRef  Google Scholar 

  20. Montagnat, J., Delingette, H., Malandain, G.: Cylindrical echocardiographic image segmentation based on 3-D deformable models. In: Taylor, C., Colchester, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI’99. LNCS, vol. 1679, pp. 168–176. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  21. Stegmann, M., Pedersen, D.: Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation, Progr. Biomed. Opt. Imag. Proc. SPIE 5746, pp. 336–350 (2005)

    Google Scholar 

  22. Szilágyi, S. M., Benyó, Z., Dávid, L.: Iterative ECG Filtering for Better Malfunction Recognition and Diagnosi. In: Proc. 5th Int. IFAC Symp. Modell. Contr. Biomed. Syst. pp. 295–300 (2003)

    Google Scholar 

  23. Szilágyi, S. M., Benyó, Z., Szilágyi, L.: Recognition of various events from 3-D heart model, 16th IFAC World Congr. Preprint, paper #4695, 1–6 (2005)

    Google Scholar 

  24. Winslow, R.L., Hinch, R., Greenstein, J.L.: Mechanisms and models of cardiac excitation-contraction coupling. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 97–131. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Szilágyi, S.M., Szilágyi, L., Benyó, Z. (2007). Volumetric Analysis of the Heart Using Echocardiography. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)