Skip to main content

Strain Measurement in the Left Ventricle During Systole with Deformable Image Registration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

The objective of this study was to validate a deformable image registration technique, termed Hyperelastic Warping, for left ventricular strain measurement during the systole using cine-gated nontagged MRI with strains measured from tagged MRI. Tagged and non-tagged cine images were obtained on a 1.5 T Siemens Avanto clinical scanner with a TrueFISP imaging sequence. The Hyperelastic Warping solution was evolved using a series of non-tagged images in 10 phases from end-diastole to end-systole. The solution may be considered as ten separate Warping problems with multiple Templates and Targets. At each stage, an active contraction was initially applied to the FE model, and then Warping penalty forces were utilized to generate the final registration. Warping results for circumferential strain were correlated (R2 =0.59) with results obtain from tagged MR images analyzed with a HARP algorithm. Results for fiber stretch, LV twist, and transmural strain distribution were similar to values in the literature. Hyperelastic Warping represents a novel approach for quantifying 3-D regional strains within the myocardium with a high resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papademetris, X., et al.: Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE Trans. Med. Imaging 21(7), 786–800 (2002)

    Article  Google Scholar 

  2. Waldman, L.K., Fung, Y.-C., Covell, J.W.: Transmural myocardial deformation in the canine left ventricle: normal in vivo three-dimensional finite strains. Circulation Research 57, 152–163 (1985)

    Google Scholar 

  3. Ingels Jr., N.B., et al.: Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation 61(5), 966–972 (1980)

    Google Scholar 

  4. McVeigh, E.R., Zerhouni, E.A.: Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180(3), 677–683 (1991)

    Google Scholar 

  5. Weidemann, F., et al.: Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function. Basic Research in Cardiology 96(6), 595–605 (2001)

    Article  Google Scholar 

  6. Lahiri, A., et al.: Effects of chronic treatment with calcium antagonists on left ventricular diastolic function in stable angina and heart failure. Circulation 81(suppl III), 130–138 (1990)

    Google Scholar 

  7. Veress, A.I., et al.: Strain measurement in coronary arteries using intravascular ultrasound and deformable images. J. Biomech. Eng. 124(6), 734–741 (2002)

    Article  Google Scholar 

  8. Veress, A.I., Phatak, N., Weiss, J.A.: Deformable Image Registration with Hyperelastic Warping. In: Suri, Wilson, Laxminarayan (eds.) Handbook of Biomedical Image Analysis: Registration Models (Part A), vol. 3, Marcel Dekker, Inc, New York (2005)

    Google Scholar 

  9. Weiss, J.A, Rabbitt, R.D., Bowden, A.E.: Incorporation of medical image data in finite element models to track strain in soft tissues. SPIE 3254, 477–484 (1998)

    Article  Google Scholar 

  10. Plein, S., et al.: Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: comparison with conventional breath-hold gradient echo acquisition in volunteers and patients. Journal of Magnetic Resonance Imaging 14(1), 23–30 (2001)

    Article  Google Scholar 

  11. Rabbitt, R.D., et al.: Mapping of hyperelastic deformable templates using the finite element method. SPIE 2573, 252–265 (1995)

    Article  Google Scholar 

  12. Veress, A.I., Gullberg, G.T., Weiss, J.A.: Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. J. Biomech. Eng. 127(7), 1195–1207 (2005)

    Article  Google Scholar 

  13. Ellis, B.J., et al.: Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. J. Orthop. Res. 24(4), 800–810 (2006)

    Article  Google Scholar 

  14. Gardiner, J.C., Weiss, J.A.: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21(6), 1098–1106 (2003)

    Article  Google Scholar 

  15. Spencer, A.: Continuum Mechanics. Longman, New York (1980)

    MATH  Google Scholar 

  16. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering 135, 107–128 (1996)

    Article  MATH  Google Scholar 

  17. Humphrey, J.D., Strumpf, R.K., Yin, F.C.: Determination of a constitutive relation for passive myocardium: II. Parameter estimation. Journal of Biomechanical Engineering 112(3), 340–346 (1990)

    Google Scholar 

  18. Veress, A.I., et al.: Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models. IEEE Trans. Med. Imaging 25(12), 1604–1616 (2006)

    Article  Google Scholar 

  19. Maker, B.N., Ferencz, R.M., Hallquist, J.O.: NIKE3D: A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. Lawrence Livermore National Laboratory Technical Report, UCRL-MA #105268 (1990)

    Google Scholar 

  20. Guccione, J.M., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: Part I-constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering 115, 72–81 (1993)

    Google Scholar 

  21. Guccione, J.M., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: Part II-constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering 115, 82–90 (1993)

    Google Scholar 

  22. Osman, N.F., Prince, J.L.: Visualizing myocardial function using HARP MRI. Phys. Med. Biol. 45(6), 1665–1682 (2000)

    Article  Google Scholar 

  23. Tseng, W.Y., et al.: Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216(1), 128–139 (2000)

    Google Scholar 

  24. Clark, N.R., et al.: Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation 84(1), 67–74 (1991)

    Google Scholar 

  25. Takeuchi, M., et al.: Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J. Am. Soc. Echocardiogr. 19(9), 1077–1084 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Phatak, N.S., Maas, S.A., Veress, A.I., Pack, N.A., Di Bella, E.V.R., Weiss, J.A. (2007). Strain Measurement in the Left Ventricle During Systole with Deformable Image Registration. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics