Skip to main content

Facing the Future: Evolutionary Possibilities for Human-Machine Creativity

  • Chapter

Part of the Natural Computing Series book series (NCS)

Summary

This chapter examines the possibilities and challenges that lie ahead for evolutionary music and art. Evolutionary computing methods have enabled new modes of creative expression in the art made by humans. One day, it may be possible for computers to make art autonomously. The idea of machines making art leads to the question: what do we mean by ‘making art’ and how do we recognise and acknowledge artistic creativity in general? Two broad categories of human-machine creativity are defined: firstly, machines that make art like, and for, humans; and secondly, machines that make ‘art’ that is recognised as creative and novel by other machines or agents. Both these categories are examined from an evolutionary computing perspective. Finding ‘good’ art involves searching a phase-space of possibilities beyond astronomical proportions, which makes evolutionary algorithms potentially suitable candidates. However, the problem of developing artistically creative programs is not simply a search problem. The multiple roles of interaction, environment, physics and physicality are examined in the context of generating aesthetic output. A number of ‘open problems’ are proposed as grand challenges of investigation for evolutionary music and art. For each problem, the impetus and background are discussed. The paper also looks at theoretical issues that might limit prospects for art made by machines, in particular the role of embodiment, physicality and morphological computation in agent-based and evolutionary models. Finally, the paper looks at artistic challenges for evolutionary music and art systems.

Keywords

  • Pixel Image
  • Golden Ratio
  • Artistic Creativity
  • Evolutionary Computing
  • Creative Behaviour

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-72877-1_19
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-72877-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dreyfus, H.L., Dreyfus, S.E., Athanasiou, T. (1986). Mind Over Machine: The Power of Human Intuition and Expertise in the Era of the Computer. Free Press. New York

    Google Scholar 

  2. Whitelaw, M. (2004). Metacreation: Art and Artificial Life. MIT Press. Cambridge, Mass.

    Google Scholar 

  3. Cohen, H. (1995). The further exploits of Aaron, painter. Stanford Humanities Review, 4: 141–158

    Google Scholar 

  4. Cohen, H. (1999). Colouring without seeing: A problem in machine creativity

    Google Scholar 

  5. McCormack, J. (2005). Open problems in evolutionary music and art. In Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G., eds.: Applications of Evolutionary Computing, EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC. Vol. 3449 of Lecture Notes in Computer Science. Lausanne, Switzerland. Springer, 428–436

    Google Scholar 

  6. Carey, J. (2005). What Good are the Arts? Faber and Faber Limited. London

    Google Scholar 

  7. Dissanayake, E. (1988). What is Art For? University of Washington Press. Seattle

    Google Scholar 

  8. Dissanayake, E. (1995). Homo Aestheticus: Where Art Comes From and Why. University of Washington Press. Seattle

    Google Scholar 

  9. Miller, G.F. (2000). The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature. William Heinemann. London

    Google Scholar 

  10. Partridge, D., Rowe, J. (2002). Creativity: A computational modeling approach. In Dartnall, T., ed.: Creativity, Cognition, and Knowledge: An Interaction. Praeger, 211–238

    Google Scholar 

  11. Humphrey, N.K. (1973). The illusion of beauty. Perception, 2: 429–439

    CrossRef  Google Scholar 

  12. Dartnall, T., ed. (2002). Creativity, Cognition, and Knowledge: An Interaction. Praeger. Westport, Connecticut

    Google Scholar 

  13. Wolpert, D.H., Macready, W.G. (1997). No free lunch theorems for search. IEEE Transactions on Evolutionary Computation, 1(1): 67–82

    CrossRef  Google Scholar 

  14. Langton, C.G. (1989). Artificial life. In Langton, C.G., ed.: Artificial Life. Vol. 6 of SFI Studies in the Sciences of Complexity. Addison-Wesley, 1–47

    Google Scholar 

  15. Pattee, H.H. (1988). Simulations, realizations, and theories of life. In Langton, C.G., ed.: Artificial Life. Vol. VI. Addison-Wesley, 63–77

    Google Scholar 

  16. Bonabeau, E.W., Theraulaz, G. (1994). Why do we need artificial life? Artificial Life, 1: 303–325

    CrossRef  Google Scholar 

  17. Dennett, D.C. (1995). Darwin’s Dangerous Idea: Evolution and the Meanings of Life. Simon & Schuster. New York

    Google Scholar 

  18. Borges, J.L. (1970). The library of babel. In Yates, D.A., Irby, J.E., eds.: Labyrinths. Penguin Books. Harmondsworth

    Google Scholar 

  19. Dennett, D.C. (1991). Real patterns. Journal of Philosophy, 88: 27–51

    CrossRef  Google Scholar 

  20. Berlyne, D.E. (1971). Aesthetics and Psychobiology. Appleton-Century-Crofts. New York, N.Y.

    Google Scholar 

  21. Allison, L. (2002). Model Classes. Technical Report 2002/125. School of Computer Science and Software Engineering, Monash University. Clayton, Victoria, Australia

    Google Scholar 

  22. Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics, 25(4): 319–328

    CrossRef  MathSciNet  Google Scholar 

  23. Takagi, H. (2001). Interactive evolutionary computation: Fusion of the capabilities of ec optimization and human evaluation. Proceedings of the IEEE, 89: 1275–1296

    CrossRef  Google Scholar 

  24. Dorin, A. (2001). Aesthetic fitness and artificial evolution for the selection of imagery from the mythical infinite library. In Kelemen, J., Sosík, P., eds.: Advances in Artificial Life. Vol. 2159 of LNAI. Prague. Springer, 659–668

    Google Scholar 

  25. Eiben, A.E., Smith, J.E. (2003). Introduction to Evolutionary Computing. Natural Computing Series. Springer

    Google Scholar 

  26. McCormack, J. (2002). Evolving for the audience. International Journal of Design Computing, 4 Available on-line: http://www.arch.usyd.edu.au/kcdc/journal/vol4/index.html.

    Google Scholar 

  27. Kitano, H. (1990). Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4: 461–476

    MATH  Google Scholar 

  28. Birkhoff, G.D. (1933). Aesthetic Measure. Harvard University Press. Cambridge, MA

    MATH  Google Scholar 

  29. Scha, R., Bod, R. (1993). Computational aesthetics. Informatie en Informatiebeleid, 11: 54–63

    Google Scholar 

  30. Elam, K. (2001). Geometry of Design: Studies in Proportion and Composition. Number 107 in Design briefs. Princeton Architectural Press. New York, N.Y.

    Google Scholar 

  31. Thompson, D.W. (1942). On Growth and Form. 2nd edn. Cambridge University Press. Cambridge

    MATH  Google Scholar 

  32. Douady, S., Couder, Y. (1992). Phyllotaxis as a physical self-organized growth process. Phys. Rev. Lett., 68: 2098–2101

    CrossRef  Google Scholar 

  33. Douady, S., Couder, Y. (1996). Phyllotaxis as a dynamical self organizing process (part i, ii, iii). Journal of Theoretical Biology, 139: 178–312

    Google Scholar 

  34. Doczi, G. (1981). The Power of Limits: Proportional Harmonies in Nature, Art and Architecture. Shambhala (Distributed by Routledge & Kegan Paul). London

    Google Scholar 

  35. Bringhurst, R. (1992). The Elements of Typographic Style. Second edition edn. Hartley & Marks. Vancouver, BC

    Google Scholar 

  36. Holger, H. (1997). Why a special issue on the golden section hypothesis?: An introduction. Empirical Studies of the Arts, 15

    Google Scholar 

  37. Kemp, M. (2004). Divine proportion and the holy grail. Nature, 428: 370

    CrossRef  Google Scholar 

  38. Tufte, E.R. (2006). Beautiful Evidence. Graphics Press LLC. Cheshire, Connecticut

    Google Scholar 

  39. Manaris, B., Machado, P., McCauley, C., Romero, J., Krehbiel, D. (2005). Developing fitness functions for pleasant music: Zipf’s law and interactive evolution systems. In Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G., eds.: Applications of Evolutionary Computing, EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC. Vol. 3449 of Lecture Notes in Computer Science. Lausanne, Switzerland. Springer, 489–507

    Google Scholar 

  40. Taylor, R.P., Micolich, A.P., Jonas, D. (1999). Fractal analysis of Pollock’s drip paintings. Nature, 399: 422

    Google Scholar 

  41. Ramachandran, V.S., Hirstein, W. (1999). The science of art: A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6: 15–51

    Google Scholar 

  42. Ramachandran, V.S. (2003). The Emerging Mind. Reith lectures. BBC in association with Profile Books. London

    Google Scholar 

  43. Rooke, S. (2002). Eons of genetically evolved algorithmic images. In Bentley, P.J., Corne, D.W., eds.: Creative Evolutionary Systems. Academic Press. London, 339–365

    Google Scholar 

  44. Wheeler, M. (2005). Reconstructing the Cognitive World: The Next Step. MIT Press. Cambridge, Mass.

    Google Scholar 

  45. Pfeifer, R., Bongard, J. (2006). How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press. Cambridge, MA

    Google Scholar 

  46. Hornby, G.S., Pollack, J.B. (2001). Evolving l-systems to generate virtual creatures. Computers & Graphics, 26: 1041–1048

    CrossRef  Google Scholar 

  47. Sims, K. (1994). Evolving virtual creatures. In: Computer Graphics. ACM SIGGRAPH, 15–22

    Google Scholar 

  48. Dorin, A. (2007). A survey of virtual ecosystems in generative electronic art. In Romero, J., Machado, P., eds.: The Art of Artificial Evolution. Springer

    Google Scholar 

  49. Taylor, T. (2002). Creativity in evolution: Individuals, interactions, and environments. In Bentley, P.J., Corne, D.W., eds.: Creative Evolutionary Systems. Academic Press. London, 79–108

    Google Scholar 

  50. Brown, D.E. (1991). Human Universals. McGraw-Hill. New York

    Google Scholar 

  51. Berlekamp, E.R., Conway, J.H., Guy, R.K. (1982). Winning Ways for your Mathematical Plays. Vol. 2. Academic Press. New York

    MATH  Google Scholar 

  52. Nake, F. (1994). How far away are we from the first masterpiece of computer art? In Brunnstein, K., Raubold, E., eds.: IFIP 13th World Congress 94. Vol. 2. Elsevier Science, B.V.. North-Holland, 406–413

    Google Scholar 

  53. Clark, A. (2003). Natural-Born cyborgs: Minds, Technologies, and the Future of Human Intelligence. Oxford University Press. New York

    Google Scholar 

  54. Levin, G. (2000). Painterly Interfaces for Audiovisual Performance. Master of science thesis in media arts and sciences. MIT. Boston

    Google Scholar 

  55. Eldridge, A.C. (2005). Cyborg dancing: Generative systems for man-machine musical improvisation. In Innocent, T., ed.: Proceedings of Third Iteration. CEMA. Melbourne, 129–141

    Google Scholar 

  56. Packard, N.H. (1988). Intrinsic adaption in a simple model for evolution. In Langton, C.G., ed.: Artificial Life. Los Alamos, NM. Addison-Wesley, 141–155

    Google Scholar 

  57. Partridge, D., Rowe, J. (1994). Computers and Creativity. Intellect. Oxford, England

    Google Scholar 

  58. Boden, M.A. (1994). What is creativity? In Boden, M.A., ed.: Dimensions of Creativity. MIT Press. Cambridge, MA, 75–117

    Google Scholar 

  59. Saunders, R., Gero, J.S. (2001). Artificial creativity: A synthetic approach to the study of creative behaviour. In Gero, J.S., ed.: Proceedings of the Fifth Conference on Computational and Cognitive Models of Creative Design. Sydney. Key Centre of Design Computing and Cognition, 113–139

    Google Scholar 

  60. Bird, J. (2004). Containing Reality: Epistemological Issues in Generative Art and Science. In: Impossible Nature: The Art of Jon McCormack. Australian Centre for the Moving Image, 40–53

    Google Scholar 

  61. Emmeche, C., Køppe, S., Stjernfelt, F. (1997). Explaining emergence: Towards an ontology of levels. Journal for General Philosophy of Science, 28: 83–119

    CrossRef  Google Scholar 

  62. Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D., Ikegami, T., Kaneko, K., Ray, T.S. (2000). Open problems in artificial life. Artificial Life, 6: 363–376

    CrossRef  Google Scholar 

  63. Abelson, H., DiSessa, A.A. (1982). Turtle Geometry: The Computer as a Medium for Exploring Mathematics. The MIT Press series in artificial intelligence. MIT Press. Cambridge, Mass.

    Google Scholar 

  64. Bird, J., Stokes, D. (2006). Evolving minimally creative robots. In Colton, S., Pease, A., eds.: Proceedings of The Third Joint Workshop on Computational Creativity (ECAI 06), 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McCormack, J. (2008). Facing the Future: Evolutionary Possibilities for Human-Machine Creativity. In: Romero, J., Machado, P. (eds) The Art of Artificial Evolution. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72877-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72877-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72876-4

  • Online ISBN: 978-3-540-72877-1

  • eBook Packages: Computer ScienceComputer Science (R0)