Skip to main content

Carbon Nanotube Synthesis and Organization

  • Chapter

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

The synthesis, sorting and organization of carbon nanotubes are major challengestoward future applications. This chapter reviews recent advances in these topics,addressing both the bulk production and processing of carbon nanotubes, and theirorganization into ordered structures, such as fibers, and aligned arrays on surfaces.The bulk synthetic methods are reviewed with emphasis on the current advancestoward mass production and selective synthesis. New approaches for the sorting ofcarbon nanotubes by structure and properties are described in the context of thespecific physical or chemical interactions at play, and referring to the characterizationmethods described in the contribution by Jorio et al. Recent advances in theorganization of carbon nanotubes into fibers are reviewed, including methodsbased on spinning from solution, from dry forests, and directly from the gasphase during growth. The organization of carbon nanotubes on surfaces,as a critical prerequisite toward future applications in nanoelectronics, isreviewed with particular emphasis given to the synthesis of both vertically andhorizontally aligned arrays. Vertically aligned growth has been recently boosted bythe development of highly efficient catalytic processes. Horizontally alignedgrowth on surfaces can yield a whole new array of carbon-nanotube patterns,with interesting physical properties and potential applications. Differentmechanisms of horizontally aligned growth include field- and flow-directedgrowth, as well as recently developed methods of surface-directed growth onsingle-crystal substrates by epitaxial approaches. The proposed mechanismspertinent to each technique are discussed throughout this review, as well astheir potential applications and critical aspects toward future progress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • T. W. Ebbesen, P. M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–222 (1992)

    Google Scholar 

  • D. S. Bethune, C. H. Kiang, M. DeVries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)

    Google Scholar 

  • A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 483–487 (1996)

    Google Scholar 

  • H. Dai, A. G. Rinzler, A. Thess, P. Nikolaev, D. T. Colbert, R. E. Smalley: Single-wall carbon nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996)

    Google Scholar 

  • J. Kong, H. Soh, A. Cassell, C. F. Quate, H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395, 878–881 (1998)

    Google Scholar 

  • J. Hafner, M. Bronikowski, B. Azamian, P. Nikolaev, D. Colbert, R. Smalley: Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296, 195–202. (1998)

    Google Scholar 

  • H. Dai: Carbon nanotubes: opportunities and challenges, Surf. Sci. 500, 218–241 (2002)

    Google Scholar 

  • H. Dai: Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002)

    Google Scholar 

  • H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, M. Chapline: Controlled chemical routes to nanotube architectures, physics and devices, J. Phys. Chem. 103, 11246–11255 (1999)

    Google Scholar 

  • J. Kong, A. M. Cassell, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998)

    Google Scholar 

  • A. Cassell, J. Raymakers, J. Kong, H. Dai: Large scale single-walled nanotubes by {CVD} synthesis, J. Phys. Chem. 103, 6484–6492 (1999)

    Google Scholar 

  • M. Su, B. Zheng, J. Liu: A scalable {CVD} method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem. Phys. Lett. 322, 321–326 (2000)

    Google Scholar 

  • P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313, 91–97 (1999)

    Google Scholar 

  • B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco: Controlled production of single-wall carbon nanotubes by catalytic decomposition of {CO} on bimetallic {C}o-{M}o catalysts, Chem. Phys. Lett. 317, 497–503 (2000)

    Google Scholar 

  • S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002)

    Google Scholar 

  • Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. J. Dai: Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced {CVD} method, Nano Lett. 4, 317–321 (2004)

    Google Scholar 

  • G. F. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari, H. Kawarada: Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes, Jpn. J. App. Phys. 1 44, 1558–1561 (2005)

    Google Scholar 

  • G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmenz, Q. Wang, J. McVittie, Y. Nishi, J. Gibbons, H. Dai: Ultra-high-yield growth of vertical single-walled carbon nanotubes: {H}idden roles of hydrogen and oxygen, Proc. Nat. Acad. Sci. 102, 16141–16145 (2005)

    Google Scholar 

  • W. L. Wang, X. D. Bai, Z. Xu, S. Liu, E. G. Wang: Low temperature growth of single-walled carbon nanotubes: {S}mall diameters with narrow distribution, Chem. Phys. Lett. 419, 81–85 (2006)

    Google Scholar 

  • T. Kato, R. Hatakeyama, K. Tohji: Diffusion plasma chemical vapour deposition yielding freestanding individual single-walled carbon nanotubes on a silicon-based flat substrate, Nanotechnol. 17, 2223–2226 (2006)

    Google Scholar 

  • A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, M. L. Simpson: Vertically aligned carbon nanofibers and related structures: {C}ontrolled synthesis and directed assembly, J. Appl. Phys. 97, 041301 (2005)

    Google Scholar 

  • C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. delaChapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997)

    Google Scholar 

  • P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313, 91–97 (1999)

    Google Scholar 

  • Y. Li, S. Peng, D. Mann, J. Cao, R. Tu, K. J. Cho, H. Dai: On the origin of preferential growth of semiconducting single-walled carbon nanotubes, J. Phys. Chem. B 109, 6968–6971 (2005)

    Google Scholar 

  • G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. J. Dai: Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 314, 974–977 (2006)

    Google Scholar 

  • S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman: Narrow (n,m)-{D}istribution of {S}ingle-{W}alled {C}arbon {N}anotubes {G}rown {U}sing a {S}olid {S}upported {C}atalyst, J. Am. Chem. Soc. 125, 11186–11187 (2003)

    Google Scholar 

  • G. Lolli, L. A. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Q. Tan, D. E. Resasco: Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of {C}o{M}o catalysts, J. Phys. Chem. B 110, 2108–2115 (2006)

    Google Scholar 

  • T. J. Park, S. Banerjee, T. Hemraj-Benny, S. S. Wong: Purification strategies and purity visualization techniques for single-walled carbon nanotubes, J. Mater. Chem. 16, 141–154 (2006)

    Google Scholar 

  • R. C. Haddon, J. Sippel, A. G. Rinzler, F. Papadimitrakopoulos: Purification and separation of carbon nanotubes, MRS Bull. 29, 252–259 (2004)

    Google Scholar 

  • T. W. Ebbesen, P. M. Ajayan, H. Hiura, K. Tanigaki: Purification of {N}anotubes, Nature 367, 519–519 (1994)

    Google Scholar 

  • J. L. Zimmerman, R. K. Bradley, C. B. Huffman, R. H. Hauge, J. L. Margrave: Gas-phase purification of single-wall carbon nanotubes, Chem. Mater. 12, 1361–1366 (2000)

    Google Scholar 

  • J. M. Moon, K. H. An, Y. H. Lee, Y. S. Park, D. J. Bae, G. S. Park: High-yield purification process of singlewalled carbon nanotubes, J. Phys. Chem. B 105, 5677–5681 (2001)

    Google Scholar 

  • Z. J. Shi, Y. F. Lian, F. H. Liao, X. H. Zhou, Z. N. Gu, Y. G. Zhang, S. Iijima: Purification of single-wall carbon nanotubes, Solid State Commun. 112, 35–37 (1999)

    Google Scholar 

  • I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge: Purification and characterization of single-wall carbon nanotubes ({SWNT}s) obtained from the gas-phase decomposition of {CO} ({H}i{P}co process), J. Phys. Chem. B 105, 8297–8301 (2001)

    Google Scholar 

  • Y. Q. Xu, H. Q. Peng, R. H. Hauge, R. E. Smalley: Controlled multistep purification of single-walled carbon nanotubes, Nano Lett. 5, 163–168 (2005)

    Google Scholar 

  • I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, R. H. Hauge: Purification and characterization of single-wall carbon nanotubes, J. Phys. Chem. B 105, 1157–1161 (2001)

    Google Scholar 

  • A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben: A simple and complete purification of single-walled carbon nanotube materials, Adv. Mater. 11, 1354–1358 (1999)

    Google Scholar 

  • E. Dujardin, T. W. Ebbesen, A. Krishnan, M. M. J. Treacy: Purification of single-shell nanotubes, Adv. Mater. 10, 611–613 (1998)

    Google Scholar 

  • D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos: Complete elimination of metal catalysts from single wall carbon nanotubes, Carbon 40, 985–988 (2002)

    Google Scholar 

  • M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. E. Fischer, D. E. Luzzi: Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation, Carbon 39, 1251–1272 (2001)

    Google Scholar 

  • A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, Appl. Phys. A-Mater. 67, 29–37 (1998)

    Google Scholar 

  • C. Bower, A. Kleinhammes, Y. Wu, O. Zhou: Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid, Chem. Phys. Lett. 288, 481–486 (1998)

    Google Scholar 

  • J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley: Fullerene pipes, Science 280, 1253–1256 (1998)

    Google Scholar 

  • Y. L. Yang, L. M. Xie, Z. Chen, M. H. Liu, T. Zhu, Z. F. Liu: Purification and length separation of single-walled carbon nanotubes using chromatographic method, Synth. Met. 155, 455–460 (2005)

    Google Scholar 

  • X. Y. Huang, R. S. McLean, M. Zheng: High-resolution length sorting and purification of {DNA}-wrapped carbon nanotubes by size-exclusion chromatography, Anal. Chem. 77, 6225–6228 (2005)

    Google Scholar 

  • S. Niyogi, H. Hu, M. A. Hamon, P. Bhowmik, B. Zhao, S. M. Rozenzhak, J. Chen, M. E. Itkis, M. S. Meier, R. C. Haddon: Chromatographic purification of soluble single-walled carbon nanotubes (s-{SWNT}s), J. Am. Chem. Soc. 123, 733–734 (2001)

    Google Scholar 

  • A. P. Yu, E. Bekyarova, M. E. Itkis, D. Fakhrutdinov, R. Webster, R. C. Haddon: Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotube, J. Am. Chem. Soc. 128, 9902–9908 (2006)

    Google Scholar 

  • H. B. Jia, Y. F. Lian, M. O. Ishitsuka, T. Nakahodo, Y. Maeda, T. Tsuchiya, T. Wakahara, T. Akasaka: Centrifugal purification of chemically modified single-walled carbon nanotube, Sci. Technol. Adv. Mater. 6, 571–581 (2005)

    Google Scholar 

  • R. Krupke, F. Hennrich: Separation techniques for carbon nanotubes, Adv. Eng. Mater. 7, 111–116 (2005)

    Google Scholar 

  • M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593–596 (2002)

    Google Scholar 

  • B. L. Chen, J. P. Selegue: Separation and characterization of single-walled and multiwalled carbon nanotubes by using flow field-flow fractionation, Anal. Chem. 74, 4774–4780 (2002)

    Google Scholar 

  • G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth: Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun. pp. 435–436 (1998)

    Google Scholar 

  • K. Arnold, F. Hennrich, R. Krupke, S. Lebedkin, M. M. Kappes: Length separation studies of single walled carbon nanotube dispersions, Phys. Stat. Sol. B 243, 3073–3076 (2006)

    Google Scholar 

  • G. S. Duesberg, J. Muster, V. Krstic, M. Burghard, S. Roth: Chromatographic size separation of single-wall carbon nanotubes, Appl. Phys. A-Mater. 67, 117–119 (1998)

    Google Scholar 

  • G. S. Duesberg, W. Blau, H. J. Byrne, J. Muster, M. Burghard, S. Roth: Chromatography of carbon nanotubes, Synthetic Met. 103, 2484–2485 (1999)

    Google Scholar 

  • E. Farkas, M. E. Anderson, Z. H. Chen, A. G. Rinzler: Length sorting cut single wall carbon nanotubes by high performance liquid chromatography, Chem. Phys. Lett. 363, 111–116 (2002)

    Google Scholar 

  • X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126, 12736–12737 (2004)

    Google Scholar 

  • A. A. Vetcher, S. Srinivasan, I. A. Vetcher, S. M. Abramov, M. Kozlov, R. H. Baughman, S. D. Levene: Fractionation of {SWNT}/nucleic acid complexes by agarose gel electrophoresis, Nanotechnol. 17, 4263–4269 (2006)

    Google Scholar 

  • R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes: Separation of metallic from semiconducting single-walled carbon nanotubes, Science 301, 344–347 (2003)

    Google Scholar 

  • R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, H. von Lohneysen: Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis, Nano Lett. 3, 1019–1023 (2003)

    Google Scholar 

  • R. Krupke, F. Hennrich, M. M. Kappes, H. V. Lohneysen: Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes, Nano Lett. 4, 1395–1399 (2004)

    Google Scholar 

  • D. S. Lee, D. W. Kim, H. S. Kim, S. W. Lee, S. H. Jhang, Y. W. Park, E. E. B. Campbell: Extraction of semiconducting {CNT}s by repeated dielectrophoretic filtering, Appl. Phys. A-Mater. 80, 5–8 (2005)

    Google Scholar 

  • Z. B. Zhang, X. J. Liu, E. E. B. Campbell, S. L. Zhang: Alternating current dielectrophoresis of carbon nanotubes, J. Appl. Phys. 98, 056103 (2005)

    Google Scholar 

  • T. Lutz, K. J. Donovan: Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis, Carbon 43, 2508–2513 (2005)

    Google Scholar 

  • C. W. Marquardt, S. Blatt, F. Hennrich, H. V. Lohneysen, R. Krupke: Probing dielectrophoretic force fields with metallic carbon nanotubes, Appl. Phys. Lett. 89, 183117 (2006)

    Google Scholar 

  • Z. Chen, Z. Y. Wu, L. M. Tong, H. P. Pan, Z. F. Liu: Simultaneous dielectrophoretic separation and assembly of single-walled carbon nanotubes on multigap nanoelectrodes and their thermal sensing properties, Anal. Chem. 78, 8069–8075 (2006)

    Google Scholar 

  • R. Krupke, S. Linden, M. Rapp, F. Hennrich: Thin films of metallic carbon nanotubes prepared by dielectrophoresis, Adv. Mater. 18, 1468–1470 (2006)

    Google Scholar 

  • D. Chattopadhyay, L. Galeska, F. Papadimitrakopoulos: A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 125, 3370–3375 (2003)

    Google Scholar 

  • G. G. Samsonidze, S. G. Chou, A. P. Santos, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. Selbst, A. K. Swan, M. S. Unlu, B. B. Goldberg, D. Chattopadhyay, S. N. Kim, F. Papadimitrakopoulos: Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance raman spectroscopy, Appl. Phys. Lett. 85, 1006–1008 (2004)

    Google Scholar 

  • Y. Maeda, S. Kimura, M. Kanda, Y. Hirashima, T. Hasegawa, T. Wakahara, Y. F. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X. W. Zhang, Z. X. Gao, Y. P. Yu, S. Nagase, S. Kazaoui, N. Minami, T. Shimizu, H. Tokumoto, R. Saito: Large-scale separation of metallic and semiconducting single-walled carbon nanotubes, J. Am. Chem. Soc. 127, 10287–10290 (2005)

    Google Scholar 

  • Y. Maeda, M. Kanda, M. Hashimoto, T. Hasegawa, S. Kimura, Y. F. Lian, T. Wakahara, T. Akasaka, S. Kazaoui, N. Minami, T. Okazaki, Y. Hayamizu, K. Hata, J. Lu, S. Nagase: Dispersion and separation of small-diameter single-walled carbon nanotubes, J. Am. Chem. Soc. 128, 12239–12242 (2006)

    Google Scholar 

  • K. J. Ziegler, D. J. Schmidt, U. Rauwald, K. N. Shah, E. L. Flor, R. H. Hauge, R. E. Smalley: Length-dependent extraction of single-walled carbon nanotubes, Nano Lett. 5, 2355–2359 (2005)

    Google Scholar 

  • L. J. Li, A. N. Khlobystov, J. G. Wiltshire, G. A. D. Briggs, R. J. Nicholas: Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes, Nature Mater. 4, 481–485 (2005)

    Google Scholar 

  • A. Ortiz-Acevedo, H. Xie, V. Zorbas, W. M. Sampson, A. B. Dalton, R. H. Baughman, R. K. Draper, I. H. Musselman, G. R. Dieckmann: Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides, J. Am. Chem. Soc. 127, 9512–9517 (2005)

    Google Scholar 

  • Z. H. Chen, X. Du, M. H. Du, C. D. Rancken, H. P. Cheng, A. G. Rinzler: Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes, Nano Lett. 3, 1245–1249 (2003)

    Google Scholar 

  • L. Kavan, L. Dunsch: Diameter-selective electrochemical doping of {H}i{P}co single-walled carbon nanotubes, Nano Lett. 3, 969–972 (2003)

    Google Scholar 

  • A. Kukovecz, T. Pichler, R. Pfeiffer, H. Kuzmany: Diameter selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the {H}i{PCO} method, Chem. Commun. pp. 1730–1731 (2002)

    Google Scholar 

  • A. Kukovecz, T. Pichler, R. Pfeiffer, C. Kramberger, H. Kuzmany: Diameter selective doping of single wall carbon nanotubes, Phys. Chem. Chem. Phys. 5, 582–587 (2003)

    Google Scholar 

  • H. P. Li, B. Zhou, Y. Lin, L. R. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard, Y. P. Sun: Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 1014–1015 (2004)

    Google Scholar 

  • M. S. Arnold, S. I. Stupp, M. C. Hersam: Enrichment of single-walled carbon nanotubes by diameter in density gradients, Nano Lett. 5, 713–718 (2005)

    Google Scholar 

  • C. Menard-Moyon, N. Izard, E. Doris, C. Mioskowski: Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides, J. Am. Chem. Soc. 128, 6552–6553 (2006)

    Google Scholar 

  • S. Banerjee, S. S. Wong: Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 2073–2081 (2004)

    Google Scholar 

  • L. An, Q. A. Fu, C. G. Lu, J. Liu: A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices, J. Am. Chem. Soc. 126, 10520–10521 (2004)

    Google Scholar 

  • Y. Miyata, Y. Maniwa, H. Kataura: Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide, J. Phys. Chem. B 110, 25–29 (2006)

    Google Scholar 

  • A. Hassanien, M. Tokumoto, P. Umek, D. Vrbanic, M. Mozetic, D. Mihailovic, P. Venturini, S. Pejovnik: Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma, Nanotechnol. 16, 278–281 (2005)

    Google Scholar 

  • G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. J. Dai: Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 314, 974–977 (2006)

    Google Scholar 

  • E. Borowiak-Palen, T. Pichler, X. Liu, M. Knupfer, A. Graff, O. Jost, W. Pompe, R. J. Kalenczuk, J. Fink: Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation, Chem. Phys. Lett. 363, 567–572 (2002)

    Google Scholar 

  • E. Menna, F. D. Negra, M. D. Fontana, M. Meneghetti: Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution, Phys. Rev. B 68, 193412 (2003)

    Google Scholar 

  • P. C. Collins, M. S. Arnold, P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292, 706–709 (2001)

    Google Scholar 

  • R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, W. Hoenlein: High-current nanotube transistors, Nano Lett. 4, 831–834 (2004)

    Google Scholar 

  • H. Q. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, H. K. Schmidt: Dielectrophoresis field flow fractionation of single-walled carbon nanotubes, J. Am. Chem. Soc. 128, 8396–8397 (2006)

    Google Scholar 

  • S. N. Kim, Z. T. Luo, F. Papadimitrakopoulos: Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes, Nano Lett. 5, 2500–2504 (2005)

    Google Scholar 

  • M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnol. 1, 60–65 (2006)

    Google Scholar 

  • L. J. Li, R. J. Nicholas: Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes, Nanotechnol. 15, 1844–1847 (2004)

    Google Scholar 

  • M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi: {DNA}-assisted dispersion and separation of carbon nanotubes, Nature Mater. 2, 338–342 (2003)

    Google Scholar 

  • M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, D. J. Walls: Structure-based carbon nanotube sorting by sequence-dependent {DNA} assembly, Science 302, 1545–1548 (2003)

    Google Scholar 

  • M. S. Strano, M. Zheng, A. Jagota, G. B. Onoa, D. A. Heller, P. W. Barone, M. L. Usrey: Understanding the nature of the {DNA}-assisted separation of single-walled carbon nanotubes using fluorescence and raman spectroscopy, Nano Lett. 4, 543–550 (2004)

    Google Scholar 

  • S. R. Lustig, A. Jagota, C. Khripin, M. Zheng: Theory of structure-based carbon nanotube separations by ion-exchange chromatography of {DNA}/{CNT} hybrids, J. Phys. Chem. B 109, 2559–2566 (2005)

    Google Scholar 

  • M. S. Strano, C. B. Huffman, V. C. Moore, M. J. O'Connell, E. H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R. H. Hauge, R. E. Smalley: Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution, J. Phys. Chem. B 107, 6979–6985 (2003)

    Google Scholar 

  • M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, R. E. Smalley: Electronic structure control of single-walled carbon nanotube functionalization, Science 301, 1519–1522 (2003)

    Google Scholar 

  • M. L. Usrey, E. S. Lippmann, M. S. Strano: Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions, J. Am. Chem. Soc. 127, 16129–16135 (2005)

    Google Scholar 

  • C. J. Wang, Q. Cao, T. Ozel, A. Gaur, J. A. Rogers, M. Shim: Electronically selective chemical functionalization of carbon nanotubes: {C}orrelation between {R}aman spectral and electrical responses, J. Am. Chem. Soc. 127, 11460–11468 (2005)

    Google Scholar 

  • C. A. Dyke, M. P. Stewart, J. M. Tour: Separation of single-walled carbon nanotubes on silica gel. {M}aterials morphology and {R}aman excitation wavelength affect data interpretation, J. Am. Chem. Soc. 127, 4497–4509 (2005)

    Google Scholar 

  • S. Baik, M. Usrey, L. Rotkina, M. Strano: Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility, J. Phys. Chem. B 108, 15560–15564 (2004)

    Google Scholar 

  • M. S. Strano: Probing chiral selective reactions using a revised {K}ataura plot for the interpretation of single-walled carbon nanotube spectroscopy, J. Am. Chem. Soc. 125, 16148–16153 (2003)

    Google Scholar 

  • K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, R. C. Haddon: Covalent bond formation to a carbon nanotube metal, Science 301, 1501–1501 (2003)

    Google Scholar 

  • K. H. An, J. S. Park, C. M. Yang, S. Y. Jeong, S. C. Lim, C. Kang, J. H. Son, M. S. Jeong, Y. H. Lee: A diameter-selective attack of metallic carbon nanotubes by nitronium ions, J. Am. Chem. Soc. 127, 5196–5203 (2005)

    Google Scholar 

  • C. M. Yang, J. S. Park, K. H. An, S. C. Lim, K. Seo, B. Kim, K. A. Park, S. Han, C. Y. Park, Y. H. Lee: Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids, J. Phys. Chem. B 109, 19242–19248 (2005)

    Google Scholar 

  • C. M. Yang, K. H. An, J. S. Park, K. A. Park, S. C. Lim, S. H. Cho, Y. S. Lee, W. Park, C. Y. Park, Y. H. Lee: Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas, Phys. Rev. B 73, 075419 (2006)

    Google Scholar 

  • T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber: Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104, 2794–2809 (2000)

    Google Scholar 

  • E. Joselevich: Chemistry and electronics of carbon nanotubes go together, Angew. Chem. Int. Ed. 43, 2992–2994 (2004)

    Google Scholar 

  • E. Joselevich: Electronic structure and chemical reactivity of carbon nanotubes: {A} chemist's view, Chem. Phys. Chem. 5, 619–624 (2004)

    Google Scholar 

  • Z. F. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes ({SWCNT}s) towards addition reactions: {D}ependence on the carbon-atom pyramidalization, Chem. Phys. Chem. 4, 93–97 (2003)

    Google Scholar 

  • R. E. Smalley, Y. B. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, J. M. Tour: Single wall carbon nanotube amplification: {E}n route to a type-specific growth mechanism, J. Am. Chem. Soc. 128, 15824–15829 (2006)

    Google Scholar 

  • Y. H. Wang, M. J. Kim, H. W. Shan, C. Kittrell, H. Fan, L. M. Ericson, W. F. Hwang, S. Arepalli, R. H. Hauge, R. E. Smalley: Continued growth of single-walled carbon nanotubes, Nano Lett. 5, 997–1002 (2005)

    Google Scholar 

  • M. J. Kim, E. Haroz, Y. Wang, H. Shan, N. Nicholas, C. Kittrell, V. C. Moore, Y. Jung, D. Luzzi, R. Wheeler, T. BensonTolle, H. Fan, S. Da, W. F. Hwang, T. J. Wainerdi, H. Schmidt, R. H. Hauge, R. E. Smalley: Nanoscopically flat open-ended single-walled carbon nanotube substrates for continued growth, Nano Lett. 7, 15–21 (2007)

    Google Scholar 

  • M. Hamm, J. A. Elliott, H. J. Smithson, A. H. Windle: Mater. Res. Soc. Symp. Proc. 788 (2004)

    Google Scholar 

  • S. Giordani, S. D. Bergin, V. Nicolosi, S. Lebedkin, M. M. Kappes, W. J. Blau, J. N. Coleman: Debundling of single-walled nanotubes by dilution: {O}bservation of large populations of individual nanotubes in amide solvent dispersions, J. Phys. Chem. B. 110, 15708–15718 (2006)

    Google Scholar 

  • M. S. P. Shaffer, X. Fan, A. H. Windle: Dispersion and packing of carbon nanotubes, Carbon 36, 1603–1612 (1998)

    Google Scholar 

  • P. J. Flory, P. R. Soc.: Phase equilibria in solutions of rod-like particles, London A 234, 73–89 (1956)

    Google Scholar 

  • W. H. Song, I. A. Kinloch, A. H. Windle: Nematic liquid crystallinity of multiwall carbon nanotubes, Science 302, 1363–1363 (2003)

    Google Scholar 

  • S. J. Zhang, I. A. Kinloch, A. H. Windle: Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes, Nano Lett. 6, 568–572 (2006)

    Google Scholar 

  • H. G. Chae, S. Kumar: Rigid-rod polymeric fibers, J. Appl. Polym. Sci. 100, 791–802 (2006)

    Google Scholar 

  • L. M. Ericson, H. Fan, H. Q. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. H. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley: Macroscopic, neat, single-walled carbon nanotube fibers, Science 305, 1447–1450 (2004)

    Google Scholar 

  • J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005)

    Google Scholar 

  • S. Zhang, K. K. K. Koziol, I. A. Kinloch, A. H. Windle: Carbon (2007) submitted

    Google Scholar 

  • A. Penicaud, L. Valat, A. Derre, P. Poulin, C. Zakri, O. Roubeau, M. Maugey, P. Miaudet, E. Anglaret, P. Petit, A. Loiseau, S. Enouz: Mild dissolution of carbon nanotubes: {C}omposite carbon nanotube fibres from polyelectrolyte solutions, Compos. Sci. Technol. 67, 795–797 (2007)

    Google Scholar 

  • L. X. Zheng, M. J. O'Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, Y. T. Zhu: Ultralong single-wall carbon nanotubes, Nature Mater. 3, 673–676 (2004)

    Google Scholar 

  • B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000)

    Google Scholar 

  • P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002)

    Google Scholar 

  • H. H. Gommans, J. W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A. G. Rinzler: Fibers of aligned single-walled carbon nanotubes: {P}olarized {R}aman spectroscopy, J. Appl. Phys. 88, 2509–2514 (2000)

    Google Scholar 

  • B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 81, 1210–1212 (2002)

    Google Scholar 

  • P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment, Nano Lett. 5, 2212–2215 (2005)

    Google Scholar 

  • V. Pichot, S. Badaire, P. A. Albouy, C. Zakri, P. Poulin, P. Launois: Structural and mechanical properties of single-wall carbon nanotube fibers, Phys. Rev. B 74, 245416 (2006)

    Google Scholar 

  • A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman: Super-tough carbon-nanotube fibres - {T}hese extraordinary composite fibres can be woven into electronic textiles, Nature 423, 703–703 (2003)

    Google Scholar 

  • A. Penicaud, P. Poulin, A. Derre, E. Anglaret, P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc. 127, 8–9 (2005)

    Google Scholar 

  • T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, R. E. Smalley: Polyacrylonitrile single-walled carbon nanotube composite fibers, Adv. Mater. 16, 58–61 (2004)

    Google Scholar 

  • C. Y. Wang, V. Mottaghitalab, C. O. Too, G. M. Spinks, G. G. Wallace: Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte, J. Power Sources 163, 1105–1109 (2007)

    Google Scholar 

  • B. G. Min, T. V. Sreekumar, T. Uchida, S. Kumar: Oxidative stabilization of {PAN}/{SWNT} composite fiber, Carbon 43, 599–604 (2005)

    Google Scholar 

  • Y. P. Wang, R. L. Cheng, L. L. Liang, Y. M. Wang: Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber, Compos. Sci. Technol. 65, 793–797 (2005)

    Google Scholar 

  • K. L. Jiang, Q. Q. Li, S. S. Fan: Nanotechnology: {S}pinning continuous carbon nanotube yarns - {C}arbon nanotubes weave their way into a range of imaginative macroscopic applications, Nature 419, 801–801 (2002)

    Google Scholar 

  • M. Zhang, K. R. Atkinson, R. H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1358–1361 (2004)

    Google Scholar 

  • J. W. S. Hearle, P. Grosberg, S. Becker: Structural {M}echanics of {F}ibres, {Y}arns and {F}abrics (Wiley, New York 1969)

    Google Scholar 

  • Q. Li, X. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu: Poster presentation preprint, MRS Fall Meeting, Boston (2006)

    Google Scholar 

  • M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman: Strong, transparent, multifunctional, carbon nanotube sheets, Science 309, 1215–1219 (2005)

    Google Scholar 

  • Y. L. Li, I. A. Kinloch, A. H. Windle: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science 304, 276–278 (2004)

    Google Scholar 

  • H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan: Direct synthesis of long single-walled carbon nanotube strands, Science 296, 884–886 (2002)

    Google Scholar 

  • M. Motta, A. Moisala, I. A. Kinloch, V. Premnath, M. Pick, A. H. Windle: The parameter space for the direct spinning of fibres and films of carbon nanotubes, Physica E 37, 40–43 (2007)

    Google Scholar 

  • M. Motta, Y. L. Li, I. Kinloch, A. Windle: Mechanical properties of continuously spun fibers of carbon nanotubes, Nano Lett. 5, 1529–1533 (2005)

    Google Scholar 

  • M. Motta, A. Moisala, I. Kinloch, A. H. Windle: High performance fibres from dog bone carbon nanotubes, Adv. Mater. 19, 3721–3726 (2007)

    Google Scholar 

  • R. F. Service: Assembling nanocircuits from the bottom up, Science 293, 782–785 (2001)

    Google Scholar 

  • S. M. Huang, L. M. Dai, A. W. H. Mau: Patterned growth and contact transfer of well-aligned carbon nanotube films, J. Phys. Chem. B. 103, 4223–4227 (1999)

    Google Scholar 

  • B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P. M. Ajayan: Organized assembly of carbon nanotubes - {C}unning refinements help to customize the architecture of nanotube structures, Nature 416, 495–496 (2002)

    Google Scholar 

  • L. M. Dai, A. Patil, X. Y. Gong, Z. X. Guo, L. Q. Liu, Y. Liu, D. B. Zhu: Aligned nanotubes, Chem. Phys. Chem. 4, 1150–1169 (2003)

    Google Scholar 

  • Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang: Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105–1107 (1998)

    Google Scholar 

  • S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)

    Google Scholar 

  • K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306, 1362–1364 (2004)

    Google Scholar 

  • Y. H. Yun, V. Shanov, Y. Tu, S. Subramaniam, M. J. Schulz: Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition, J. Phys. Chem. B. 110, 23920–23925 (2006)

    Google Scholar 

  • Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. T. Zhu: Sustained growth of ultralong carbon nanotube arrays for fiber spinning, Adv. Mater. 18, 3160–3163 (2006)

    Google Scholar 

  • H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga, T. Setoguchi: Gas analysis of the {CVD} process for high yield growth of carbon nanotubes over metal-supported catalysts, Carbon 44, 2912–2918 (2006)

    Google Scholar 

  • S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. J. Pan, Y. Nakayama: Growth of super long aligned brush-like carbon nanotubes, Jpn. J. Appl. Phys. 2 45, L720–L722 (2006)

    Google Scholar 

  • D. N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima: 84\,% {C}atalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach, J. Phys. Chem. B 110, 8035–8038 (2006)

    Google Scholar 

  • G. F. Zhong, T. Iwasaki, H. Kawarada: Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes, Carbon 44, 2009–2014 (2006)

    Google Scholar 

  • D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima: Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis, Phys. Rev. Lett. 95, 056104 (2005)

    Google Scholar 

  • T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, S. Iijima: Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nature Nanotechnol. 1, 131–136 (2006)

    Google Scholar 

  • T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima: Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils, J. Am. Chem. Soc. 128, 13338–13339 (2006)

    Google Scholar 

  • D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature Mater. 5, 987–994 (2006)

    Google Scholar 

  • Y. H. Yan, M. B. Chan-Park, Q. Zhang: Advances in carbon-nanotube assembly, Small 3, 24–42 (2007)

    Google Scholar 

  • J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, R. E. Smalley: Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates, Chem. Phys. Lett. 303, 125–129 (1999)

    Google Scholar 

  • C. Klinke, J. B. Hannon, A. Afzali, P. Avouris: Field-{E}ffect {T}ransistors {A}ssembled from {F}unctionalized {C}arbon {N}anotubes, Nano Lett. 6, 906–910 (2006)

    Google Scholar 

  • S. G. Rao, L. Huang, W. Setyawan, S. H. Hong: Large-scale assembly of carbon nanotubes, Nature 425, 36–37 (2003)

    Google Scholar 

  • Y. H. Wang, D. Maspoch, S. L. Zou, G. C. Schatz, R. E. Smalley, C. A. Mirkin: Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates, Proc. Nat. Acad. Sci. 103, 2026–2031 (2006)

    Google Scholar 

  • S. Zou, D. Maspoch, Y. Wang, C. A. Mirkin, G. C. Schatz: Rings of {S}ingle-{W}alled {C}arbon {N}anotubes: {M}olecular-{T}emplate {D}irected {A}ssembly and {M}onte {C}arlo {M}odeling, Nano Lett. 7, 276–280 (2007)

    Google Scholar 

  • A. L. Bassi, M. G. Beghi, C. S. Casari, C. E. Bottani, A. Podesta, P. Milani, A. Zakhidov, R. Baughman, D. A. Walters, R. E. Smalley: Inelastic light scattering from magnetically aligned single-walled carbon nanotubes and estimate of their two-dimensional {Y}oung's modulus, Diam. Relat. Mater. 12, 806–810 (2003)

    Google Scholar 

  • M. J. Casavant, D. A. Walters, J. J. Schmidt, R. E. Smalley: Neat macroscopic membranes of aligned carbon nanotubes, J. Appl. Phys. 93, 2153–2156 (2003)

    Google Scholar 

  • J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, R. E. Smalley: Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties, J. Appl. Phys. 93, 2157–2163 (2003)

    Google Scholar 

  • D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley: In-plane-aligned membranes of carbon nanotubes, Chem. Phys. Lett. 338, 14–20 (2001)

    Google Scholar 

  • B. W. Smith, Z. Benes, D. E. Luzzi, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, R. E. Smalley: Structural anisotropy of magnetically aligned single wall carbon nanotube films, Appl. Phys. Lett. 77, 663–665 (2000)

    Google Scholar 

  • M. D. Lay, J. P. Novak, E. S. Snow: Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes, Nano Lett. 4, 603–606 (2004)

    Google Scholar 

  • J. Q. Li, Q. Zhang, N. Peng, Q. Zhu: Manipulation of carbon nanotubes using {AC} dielectrophoresis, Appl. Phys. Lett. 86, 153116 (2005)

    Google Scholar 

  • J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L. C. Qin, O. Zhou: Rapid and reproducible fabrication of carbon nanotube {AFM} probes by dielectrophoresis, Nano Lett. 5, 11–14 (2005)

    Google Scholar 

  • J. Tang, B. Gao, H. Z. Geng, O. D. Velev, L. C. Qin, O. Zhou: Assembly of {ID} nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis, Adv. Mater. 15, 1352–1355 (2003)

    Google Scholar 

  • R. Krupke, F. Hennrich, H. B. Weber, D. Beckmann, O. Hampe, S. Malik, M. M. Kappes, H. V. Lohneysen: Contacting single bundles of carbon nanotubes with alternating electric fields, Appl. Phys. A-Mater. 76, 397–400 (2003)

    Google Scholar 

  • X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, H. Dai: Langmuir-{B}lodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials, J. Am. Chem. Soc. 129, 4890–4891 (2007)

    Google Scholar 

  • J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395, 878–881 (1998)

    Google Scholar 

  • E. Joselevich, C. M. Lieber: Vectorial growth of metallic and semiconducting single-wall carbon nanotubes, Nano Lett. 2, 1137–1141 (2002)

    Google Scholar 

  • L. X. Benedict, S. G. Louie, M. L. Cohen: Static {P}olarizabilities of {S}ingle-{W}all {C}arbon {N}anotubes, Phys. Rev. B 52, 8541–8549 (1995)

    Google Scholar 

  • Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong, H. J. Dai: Electric-field-directed growth of aligned single-walled carbon nanotubes, Appl. Phys. Lett. 79, 3155–3157 (2001)

    Google Scholar 

  • A. Ural, Y. M. Li, H. J. Dai: Electric-field-aligned growth of single-walled carbon nanotubes on surfaces, Appl. Phys. Lett. 81, 3464–3466 (2002)

    Google Scholar 

  • A. Nojeh, A. Ural, R. F. Pease, H. J. Dai: Electric-field-directed growth of carbon nanotubes in two dimensions, J. Vac. Sci. Technol. B 22, 3421–3425 (2004)

    Google Scholar 

  • A. Ismach, E. Joselevich: Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth, Nano Lett. 6, 1706–1710 (2006)

    Google Scholar 

  • S. Dittmer, J. Svensson, E. E. B. Campbell: Electric field aligned growth of single-walled carbon nanotubes, Curr. Appl. Phys. 4, 595–598 (2004)

    Google Scholar 

  • I. Radu, Y. Hanein, D. H. Cobden: Oriented growth of single-wall carbon nanotubes using alumina patterns, Nanotechnol. 15, 473–476 (2004)

    Google Scholar 

  • C. Kocabas, M. A. Meitl, A. Gaur, M. Shim, J. A. Rogers: Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation, Nano Lett. 4, 2421–2426 (2004)

    Google Scholar 

  • K. H. Lee, J. M. Cho, W. Sigmund: Control of growth orientation for carbon nanotubes, Appl. Phys. Lett. 82, 448–450 (2003)

    Google Scholar 

  • N. Kumar, W. Curtis, J. I. Hahm: Laterally aligned, multiwalled carbon nanotube growth using {M}agnetospirillium magnetotacticum, Appl. Phys. Lett. 86, 173101 (2005)

    Google Scholar 

  • S. M. Huang, X. Y. Cai, J. Liu: Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates, J. Am. Chem. Soc. 125, 5636–5637 (2003)

    Google Scholar 

  • S. M. Huang, Q. Fu, L. An, J. Liu: Growth of aligned {SWNT} arrays from water-soluble molecular clusters for nanotube device fabrication, Phys. Chem. Chem. Phys. 6, 1077–1079 (2004)

    Google Scholar 

  • S. M. Huang, B. Maynor, X. Y. Cai, J. Liu: Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces, Adv. Mater. 15, 1651–1655 (2003)

    Google Scholar 

  • S. M. Huang, X. Y. Cai, C. S. Du, J. Liu: Oriented long single walled carbon nanotubes on substrates from floating catalysts, J. Phys. Chem. B 107, 13251–13254 (2003)

    Google Scholar 

  • S. D. Li, Z. Yu, C. Rutherglen, P. J. Burke: Electrical properties of 0.4 cm long single-walled carbon nanotubes, Nano Lett. 4, 2003–2007 (2004)

    Google Scholar 

  • Z. Yu, S. D. Li, P. J. Burke: Synthesis of aligned arrays of millimeter long, straight single-walled carbon nanotubes, Chem. Mater. 16, 3414–3416 (2004)

    Google Scholar 

  • B. H. Hong, J. Y. Lee, T. Beetz, Y. M. Zhu, P. Kim, K. S. Kim: Quasi-continuous growth of ultralong carbon nanotube arrays, J. Am. Chem. Soc. 127, 15336–15337 (2005)

    Google Scholar 

  • W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, Y. Li: Copper catalyzing growth of single-walled carbon nanotubes on substrates, Nano Lett. 6, 2987–2990 (2006)

    Google Scholar 

  • D. E. Hooks, T. Fritz, M. D. Ward: Epitaxy and molecular organization on solid substrates, Adv. Mater. 13, 227–241 (2001)

    Google Scholar 

  • A. Ismach, D. Kantorovich, E. Joselevich: Carbon nanotube graphoepitaxy: {H}ighly oriented growth by faceted nanosteps, J. Am. Chem. Soc. 127, 11554–11555 (2005)

    Google Scholar 

  • M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu, J. Liu: Lattice-oriented growth of single-walled carbon nanotubes, J. Phys. Chem. B 104, 6505–6508 (2000)

    Google Scholar 

  • M. Tominaga, A. Ohira, A. Kubo, I. Taniguchi, M. Kunitake: Growth of carbon nanotubes on a gold(111) surface using two-dimensional iron oxide nano-particle catalysts derived from iron storage protein, Chem. Commun. pp. 1518–1519 (2004)

    Google Scholar 

  • V. Derycke, R. Martel, M. Radosvljevic, F. M. R. Ross, P. Avouris: Catalyst-free growth of ordered single-walled carbon nanotube networks, Nano Lett. 2, 1043–1046 (2002)

    Google Scholar 

  • L. B. Ruppalt, P. M. Albrecht, J. W. Lyding: Atomic resolution scanning tunneling microscope study of single-wailed carbon nanotubes on {GaAs}(110), J. Vac. Sci. Technol. B. 22, 2005–2007 (2004)

    Google Scholar 

  • L. B. Ruppalt, P. M. Albrecht, J. W. Lyding: {UHV-STM} study of single-walled carbon nanotubes applied to the {GaAs}(110) and {InAs}(110) surfaces, J. Phys. IV 132, 31–34 (2006)

    Google Scholar 

  • A. Ismach, L. Segev, E. Wachtel, E. Joselevich: Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43, 6140–6143 (2004)

    Google Scholar 

  • S. Han, X. L. Liu, C. W. Zhou: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire, J. Am. Chem. Soc. 127, 5294–5295 (2005)

    Google Scholar 

  • H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji: Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface, Chem. Phys. Lett. 408, 433–438 (2005)

    Google Scholar 

  • H. Ago, N. Uehara, K. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji: Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized {R}aman spectroscopy, Chem. Phys. Lett. 421, 399–403 (2006)

    Google Scholar 

  • Q. K. Yu, G. T. Qin, H. Li, Z. H. Xia, Y. B. Nian, S. S. Pei: Mechanism of horizontally aligned growth of single-wall carbon nanotubes on {R}-plane sapphire, J. Phys. Chem. B 110, 22676–22680 (2006)

    Google Scholar 

  • X. L. Liu, S. Han, C. W. Zhou: Novel nanotube-on-insulator {(NOI)} approach toward single-walled carbon nanotube devices, Nano Lett. 6, 34–39 (2006)

    Google Scholar 

  • M. Maret, K. Hostache, M. C. Schouler, B. Marcus, F. Roussel-Dherbey, M. Albrecht, P. Gadelle: Oriented growth of single-walled carbon nanotubes on a {MgO}(001) surface, Carbon 45, 180–187 (2007)

    Google Scholar 

  • M. Souza, A. Jorio, C. Fantini, B. R. A. Neves, M. A. Pimenta, R. Saito, A. Ismach, E. Joselevich, V. W. Brar, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus: Single- and double-resonance {R}aman {G}-band processes in carbon nanotubes, Phys. Rev. B 69, 241403 (2004)

    Google Scholar 

  • A. Ismach, D. Kantorovich, J. Berson, N. Geblinger, L. Segev, E. Wachtel, H. Son, A. Jorio, M. S. Dresselhaus, G. Dresselhaus, E. Joselevich: Epitaxial {M}odes of {C}arbon {N}anotube {G}rowth on {V}icinal a-{Al2O3} (0001) {S}urfaces, unpublished

    Google Scholar 

  • C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors, Small 1, 1110–1116 (2005)

    Google Scholar 

  • C. Kocabas, M. Shim, J. A. Rogers: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices, J. Am. Chem. Soc. 128, 4540–4541 (2006)

    Google Scholar 

  • H. I. Smith, D. C. Flanders: Oriented {C}rystal-{G}rowth on {A}morphous {S}ubstrates {U}sing {A}rtificial {S}urface-{R}elief {G}ratings, Appl. Phys. Lett. 32, 349–350 (1978)

    Google Scholar 

  • R. A. Segalman, H. Yokoyama, E. J. Kramer: Graphoepitaxy of spherical domain block copolymer films, Adv. Mater. 13, 1152–1155 (2001)

    Google Scholar 

  • T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000)

    Google Scholar 

  • A. Javey, H. J. Dai: Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials, J. Am. Chem. Soc. 127, 11942–11943 (2005)

    Google Scholar 

  • S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov: Atomic-scale imaging of carbon nanofibre growth, Nature 427, 426–429 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Joselevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joselevich, E., Dai, H., Liu, J., Hata, K., H. Windle, A. (2007). Carbon Nanotube Synthesis and Organization. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_4

Download citation

Publish with us

Policies and ethics