Carbon Nanotube Synthesis and Organization

  • Ernesto Joselevich
  • Hongjie Dai
  • Jie Liu
  • Kenji Hata
  • Alan H. Windle
Part of the Topics in Applied Physics book series (TAP, volume 111)

Abstract

The synthesis, sorting and organization of carbon nanotubes are major challengestoward future applications. This chapter reviews recent advances in these topics,addressing both the bulk production and processing of carbon nanotubes, and theirorganization into ordered structures, such as fibers, and aligned arrays on surfaces.The bulk synthetic methods are reviewed with emphasis on the current advancestoward mass production and selective synthesis. New approaches for the sorting ofcarbon nanotubes by structure and properties are described in the context of thespecific physical or chemical interactions at play, and referring to the characterizationmethods described in the contribution by Jorio et al. Recent advances in theorganization of carbon nanotubes into fibers are reviewed, including methodsbased on spinning from solution, from dry forests, and directly from the gasphase during growth. The organization of carbon nanotubes on surfaces,as a critical prerequisite toward future applications in nanoelectronics, isreviewed with particular emphasis given to the synthesis of both vertically andhorizontally aligned arrays. Vertically aligned growth has been recently boosted bythe development of highly efficient catalytic processes. Horizontally alignedgrowth on surfaces can yield a whole new array of carbon-nanotube patterns,with interesting physical properties and potential applications. Differentmechanisms of horizontally aligned growth include field- and flow-directedgrowth, as well as recently developed methods of surface-directed growth onsingle-crystal substrates by epitaxial approaches. The proposed mechanismspertinent to each technique are discussed throughout this review, as well astheir potential applications and critical aspects toward future progress.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. W. Ebbesen, P. M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–222 (1992) Google Scholar
  2. D. S. Bethune, C. H. Kiang, M. DeVries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993) Google Scholar
  3. A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 483–487 (1996) Google Scholar
  4. H. Dai, A. G. Rinzler, A. Thess, P. Nikolaev, D. T. Colbert, R. E. Smalley: Single-wall carbon nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996) Google Scholar
  5. J. Kong, H. Soh, A. Cassell, C. F. Quate, H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395, 878–881 (1998) Google Scholar
  6. J. Hafner, M. Bronikowski, B. Azamian, P. Nikolaev, D. Colbert, R. Smalley: Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296, 195–202. (1998) Google Scholar
  7. H. Dai: Carbon nanotubes: opportunities and challenges, Surf. Sci. 500, 218–241 (2002) Google Scholar
  8. H. Dai: Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002) Google Scholar
  9. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, M. Chapline: Controlled chemical routes to nanotube architectures, physics and devices, J. Phys. Chem. 103, 11246–11255 (1999) Google Scholar
  10. J. Kong, A. M. Cassell, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998) Google Scholar
  11. A. Cassell, J. Raymakers, J. Kong, H. Dai: Large scale single-walled nanotubes by {CVD} synthesis, J. Phys. Chem. 103, 6484–6492 (1999) Google Scholar
  12. M. Su, B. Zheng, J. Liu: A scalable {CVD} method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem. Phys. Lett. 322, 321–326 (2000) Google Scholar
  13. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313, 91–97 (1999) Google Scholar
  14. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco: Controlled production of single-wall carbon nanotubes by catalytic decomposition of {CO} on bimetallic {C}o-{M}o catalysts, Chem. Phys. Lett. 317, 497–503 (2000) Google Scholar
  15. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002) Google Scholar
  16. Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. J. Dai: Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced {CVD} method, Nano Lett. 4, 317–321 (2004) Google Scholar
  17. G. F. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari, H. Kawarada: Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes, Jpn. J. App. Phys. 1 44, 1558–1561 (2005) Google Scholar
  18. G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmenz, Q. Wang, J. McVittie, Y. Nishi, J. Gibbons, H. Dai: Ultra-high-yield growth of vertical single-walled carbon nanotubes: {H}idden roles of hydrogen and oxygen, Proc. Nat. Acad. Sci. 102, 16141–16145 (2005) Google Scholar
  19. W. L. Wang, X. D. Bai, Z. Xu, S. Liu, E. G. Wang: Low temperature growth of single-walled carbon nanotubes: {S}mall diameters with narrow distribution, Chem. Phys. Lett. 419, 81–85 (2006) Google Scholar
  20. T. Kato, R. Hatakeyama, K. Tohji: Diffusion plasma chemical vapour deposition yielding freestanding individual single-walled carbon nanotubes on a silicon-based flat substrate, Nanotechnol. 17, 2223–2226 (2006) Google Scholar
  21. A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, M. L. Simpson: Vertically aligned carbon nanofibers and related structures: {C}ontrolled synthesis and directed assembly, J. Appl. Phys. 97, 041301 (2005) Google Scholar
  22. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. delaChapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997) Google Scholar
  23. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313, 91–97 (1999) Google Scholar
  24. Y. Li, S. Peng, D. Mann, J. Cao, R. Tu, K. J. Cho, H. Dai: On the origin of preferential growth of semiconducting single-walled carbon nanotubes, J. Phys. Chem. B 109, 6968–6971 (2005) Google Scholar
  25. G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. J. Dai: Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 314, 974–977 (2006) Google Scholar
  26. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman: Narrow (n,m)-{D}istribution of {S}ingle-{W}alled {C}arbon {N}anotubes {G}rown {U}sing a {S}olid {S}upported {C}atalyst, J. Am. Chem. Soc. 125, 11186–11187 (2003) Google Scholar
  27. G. Lolli, L. A. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Q. Tan, D. E. Resasco: Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of {C}o{M}o catalysts, J. Phys. Chem. B 110, 2108–2115 (2006) Google Scholar
  28. T. J. Park, S. Banerjee, T. Hemraj-Benny, S. S. Wong: Purification strategies and purity visualization techniques for single-walled carbon nanotubes, J. Mater. Chem. 16, 141–154 (2006) Google Scholar
  29. R. C. Haddon, J. Sippel, A. G. Rinzler, F. Papadimitrakopoulos: Purification and separation of carbon nanotubes, MRS Bull. 29, 252–259 (2004) Google Scholar
  30. T. W. Ebbesen, P. M. Ajayan, H. Hiura, K. Tanigaki: Purification of {N}anotubes, Nature 367, 519–519 (1994) Google Scholar
  31. J. L. Zimmerman, R. K. Bradley, C. B. Huffman, R. H. Hauge, J. L. Margrave: Gas-phase purification of single-wall carbon nanotubes, Chem. Mater. 12, 1361–1366 (2000) Google Scholar
  32. J. M. Moon, K. H. An, Y. H. Lee, Y. S. Park, D. J. Bae, G. S. Park: High-yield purification process of singlewalled carbon nanotubes, J. Phys. Chem. B 105, 5677–5681 (2001) Google Scholar
  33. Z. J. Shi, Y. F. Lian, F. H. Liao, X. H. Zhou, Z. N. Gu, Y. G. Zhang, S. Iijima: Purification of single-wall carbon nanotubes, Solid State Commun. 112, 35–37 (1999) Google Scholar
  34. I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge: Purification and characterization of single-wall carbon nanotubes ({SWNT}s) obtained from the gas-phase decomposition of {CO} ({H}i{P}co process), J. Phys. Chem. B 105, 8297–8301 (2001) Google Scholar
  35. Y. Q. Xu, H. Q. Peng, R. H. Hauge, R. E. Smalley: Controlled multistep purification of single-walled carbon nanotubes, Nano Lett. 5, 163–168 (2005) Google Scholar
  36. I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, R. H. Hauge: Purification and characterization of single-wall carbon nanotubes, J. Phys. Chem. B 105, 1157–1161 (2001) Google Scholar
  37. A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben: A simple and complete purification of single-walled carbon nanotube materials, Adv. Mater. 11, 1354–1358 (1999) Google Scholar
  38. E. Dujardin, T. W. Ebbesen, A. Krishnan, M. M. J. Treacy: Purification of single-shell nanotubes, Adv. Mater. 10, 611–613 (1998) Google Scholar
  39. D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos: Complete elimination of metal catalysts from single wall carbon nanotubes, Carbon 40, 985–988 (2002) Google Scholar
  40. M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. E. Fischer, D. E. Luzzi: Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation, Carbon 39, 1251–1272 (2001) Google Scholar
  41. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, Appl. Phys. A-Mater. 67, 29–37 (1998) Google Scholar
  42. C. Bower, A. Kleinhammes, Y. Wu, O. Zhou: Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid, Chem. Phys. Lett. 288, 481–486 (1998) Google Scholar
  43. J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley: Fullerene pipes, Science 280, 1253–1256 (1998) Google Scholar
  44. Y. L. Yang, L. M. Xie, Z. Chen, M. H. Liu, T. Zhu, Z. F. Liu: Purification and length separation of single-walled carbon nanotubes using chromatographic method, Synth. Met. 155, 455–460 (2005) Google Scholar
  45. X. Y. Huang, R. S. McLean, M. Zheng: High-resolution length sorting and purification of {DNA}-wrapped carbon nanotubes by size-exclusion chromatography, Anal. Chem. 77, 6225–6228 (2005) Google Scholar
  46. S. Niyogi, H. Hu, M. A. Hamon, P. Bhowmik, B. Zhao, S. M. Rozenzhak, J. Chen, M. E. Itkis, M. S. Meier, R. C. Haddon: Chromatographic purification of soluble single-walled carbon nanotubes (s-{SWNT}s), J. Am. Chem. Soc. 123, 733–734 (2001) Google Scholar
  47. A. P. Yu, E. Bekyarova, M. E. Itkis, D. Fakhrutdinov, R. Webster, R. C. Haddon: Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotube, J. Am. Chem. Soc. 128, 9902–9908 (2006) Google Scholar
  48. H. B. Jia, Y. F. Lian, M. O. Ishitsuka, T. Nakahodo, Y. Maeda, T. Tsuchiya, T. Wakahara, T. Akasaka: Centrifugal purification of chemically modified single-walled carbon nanotube, Sci. Technol. Adv. Mater. 6, 571–581 (2005) Google Scholar
  49. R. Krupke, F. Hennrich: Separation techniques for carbon nanotubes, Adv. Eng. Mater. 7, 111–116 (2005) Google Scholar
  50. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593–596 (2002) Google Scholar
  51. B. L. Chen, J. P. Selegue: Separation and characterization of single-walled and multiwalled carbon nanotubes by using flow field-flow fractionation, Anal. Chem. 74, 4774–4780 (2002) Google Scholar
  52. G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth: Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun. pp. 435–436 (1998) Google Scholar
  53. K. Arnold, F. Hennrich, R. Krupke, S. Lebedkin, M. M. Kappes: Length separation studies of single walled carbon nanotube dispersions, Phys. Stat. Sol. B 243, 3073–3076 (2006) Google Scholar
  54. G. S. Duesberg, J. Muster, V. Krstic, M. Burghard, S. Roth: Chromatographic size separation of single-wall carbon nanotubes, Appl. Phys. A-Mater. 67, 117–119 (1998) Google Scholar
  55. G. S. Duesberg, W. Blau, H. J. Byrne, J. Muster, M. Burghard, S. Roth: Chromatography of carbon nanotubes, Synthetic Met. 103, 2484–2485 (1999) Google Scholar
  56. E. Farkas, M. E. Anderson, Z. H. Chen, A. G. Rinzler: Length sorting cut single wall carbon nanotubes by high performance liquid chromatography, Chem. Phys. Lett. 363, 111–116 (2002) Google Scholar
  57. X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126, 12736–12737 (2004) Google Scholar
  58. A. A. Vetcher, S. Srinivasan, I. A. Vetcher, S. M. Abramov, M. Kozlov, R. H. Baughman, S. D. Levene: Fractionation of {SWNT}/nucleic acid complexes by agarose gel electrophoresis, Nanotechnol. 17, 4263–4269 (2006) Google Scholar
  59. R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes: Separation of metallic from semiconducting single-walled carbon nanotubes, Science 301, 344–347 (2003) Google Scholar
  60. R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, H. von Lohneysen: Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis, Nano Lett. 3, 1019–1023 (2003) Google Scholar
  61. R. Krupke, F. Hennrich, M. M. Kappes, H. V. Lohneysen: Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes, Nano Lett. 4, 1395–1399 (2004) Google Scholar
  62. D. S. Lee, D. W. Kim, H. S. Kim, S. W. Lee, S. H. Jhang, Y. W. Park, E. E. B. Campbell: Extraction of semiconducting {CNT}s by repeated dielectrophoretic filtering, Appl. Phys. A-Mater. 80, 5–8 (2005) Google Scholar
  63. Z. B. Zhang, X. J. Liu, E. E. B. Campbell, S. L. Zhang: Alternating current dielectrophoresis of carbon nanotubes, J. Appl. Phys. 98, 056103 (2005) Google Scholar
  64. T. Lutz, K. J. Donovan: Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis, Carbon 43, 2508–2513 (2005) Google Scholar
  65. C. W. Marquardt, S. Blatt, F. Hennrich, H. V. Lohneysen, R. Krupke: Probing dielectrophoretic force fields with metallic carbon nanotubes, Appl. Phys. Lett. 89, 183117 (2006) Google Scholar
  66. Z. Chen, Z. Y. Wu, L. M. Tong, H. P. Pan, Z. F. Liu: Simultaneous dielectrophoretic separation and assembly of single-walled carbon nanotubes on multigap nanoelectrodes and their thermal sensing properties, Anal. Chem. 78, 8069–8075 (2006) Google Scholar
  67. R. Krupke, S. Linden, M. Rapp, F. Hennrich: Thin films of metallic carbon nanotubes prepared by dielectrophoresis, Adv. Mater. 18, 1468–1470 (2006) Google Scholar
  68. D. Chattopadhyay, L. Galeska, F. Papadimitrakopoulos: A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 125, 3370–3375 (2003) Google Scholar
  69. G. G. Samsonidze, S. G. Chou, A. P. Santos, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. Selbst, A. K. Swan, M. S. Unlu, B. B. Goldberg, D. Chattopadhyay, S. N. Kim, F. Papadimitrakopoulos: Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance raman spectroscopy, Appl. Phys. Lett. 85, 1006–1008 (2004) Google Scholar
  70. Y. Maeda, S. Kimura, M. Kanda, Y. Hirashima, T. Hasegawa, T. Wakahara, Y. F. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X. W. Zhang, Z. X. Gao, Y. P. Yu, S. Nagase, S. Kazaoui, N. Minami, T. Shimizu, H. Tokumoto, R. Saito: Large-scale separation of metallic and semiconducting single-walled carbon nanotubes, J. Am. Chem. Soc. 127, 10287–10290 (2005) Google Scholar
  71. Y. Maeda, M. Kanda, M. Hashimoto, T. Hasegawa, S. Kimura, Y. F. Lian, T. Wakahara, T. Akasaka, S. Kazaoui, N. Minami, T. Okazaki, Y. Hayamizu, K. Hata, J. Lu, S. Nagase: Dispersion and separation of small-diameter single-walled carbon nanotubes, J. Am. Chem. Soc. 128, 12239–12242 (2006) Google Scholar
  72. K. J. Ziegler, D. J. Schmidt, U. Rauwald, K. N. Shah, E. L. Flor, R. H. Hauge, R. E. Smalley: Length-dependent extraction of single-walled carbon nanotubes, Nano Lett. 5, 2355–2359 (2005) Google Scholar
  73. L. J. Li, A. N. Khlobystov, J. G. Wiltshire, G. A. D. Briggs, R. J. Nicholas: Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes, Nature Mater. 4, 481–485 (2005) Google Scholar
  74. A. Ortiz-Acevedo, H. Xie, V. Zorbas, W. M. Sampson, A. B. Dalton, R. H. Baughman, R. K. Draper, I. H. Musselman, G. R. Dieckmann: Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides, J. Am. Chem. Soc. 127, 9512–9517 (2005) Google Scholar
  75. Z. H. Chen, X. Du, M. H. Du, C. D. Rancken, H. P. Cheng, A. G. Rinzler: Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes, Nano Lett. 3, 1245–1249 (2003) Google Scholar
  76. L. Kavan, L. Dunsch: Diameter-selective electrochemical doping of {H}i{P}co single-walled carbon nanotubes, Nano Lett. 3, 969–972 (2003) Google Scholar
  77. A. Kukovecz, T. Pichler, R. Pfeiffer, H. Kuzmany: Diameter selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the {H}i{PCO} method, Chem. Commun. pp. 1730–1731 (2002) Google Scholar
  78. A. Kukovecz, T. Pichler, R. Pfeiffer, C. Kramberger, H. Kuzmany: Diameter selective doping of single wall carbon nanotubes, Phys. Chem. Chem. Phys. 5, 582–587 (2003) Google Scholar
  79. H. P. Li, B. Zhou, Y. Lin, L. R. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard, Y. P. Sun: Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 1014–1015 (2004) Google Scholar
  80. M. S. Arnold, S. I. Stupp, M. C. Hersam: Enrichment of single-walled carbon nanotubes by diameter in density gradients, Nano Lett. 5, 713–718 (2005) Google Scholar
  81. C. Menard-Moyon, N. Izard, E. Doris, C. Mioskowski: Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides, J. Am. Chem. Soc. 128, 6552–6553 (2006) Google Scholar
  82. S. Banerjee, S. S. Wong: Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 2073–2081 (2004) Google Scholar
  83. L. An, Q. A. Fu, C. G. Lu, J. Liu: A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices, J. Am. Chem. Soc. 126, 10520–10521 (2004) Google Scholar
  84. Y. Miyata, Y. Maniwa, H. Kataura: Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide, J. Phys. Chem. B 110, 25–29 (2006) Google Scholar
  85. A. Hassanien, M. Tokumoto, P. Umek, D. Vrbanic, M. Mozetic, D. Mihailovic, P. Venturini, S. Pejovnik: Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma, Nanotechnol. 16, 278–281 (2005) Google Scholar
  86. G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. J. Dai: Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 314, 974–977 (2006) Google Scholar
  87. E. Borowiak-Palen, T. Pichler, X. Liu, M. Knupfer, A. Graff, O. Jost, W. Pompe, R. J. Kalenczuk, J. Fink: Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation, Chem. Phys. Lett. 363, 567–572 (2002) Google Scholar
  88. E. Menna, F. D. Negra, M. D. Fontana, M. Meneghetti: Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution, Phys. Rev. B 68, 193412 (2003) Google Scholar
  89. P. C. Collins, M. S. Arnold, P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292, 706–709 (2001) Google Scholar
  90. R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, W. Hoenlein: High-current nanotube transistors, Nano Lett. 4, 831–834 (2004) Google Scholar
  91. H. Q. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, H. K. Schmidt: Dielectrophoresis field flow fractionation of single-walled carbon nanotubes, J. Am. Chem. Soc. 128, 8396–8397 (2006) Google Scholar
  92. S. N. Kim, Z. T. Luo, F. Papadimitrakopoulos: Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes, Nano Lett. 5, 2500–2504 (2005) Google Scholar
  93. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnol. 1, 60–65 (2006) Google Scholar
  94. L. J. Li, R. J. Nicholas: Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes, Nanotechnol. 15, 1844–1847 (2004) Google Scholar
  95. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi: {DNA}-assisted dispersion and separation of carbon nanotubes, Nature Mater. 2, 338–342 (2003) Google Scholar
  96. M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, D. J. Walls: Structure-based carbon nanotube sorting by sequence-dependent {DNA} assembly, Science 302, 1545–1548 (2003) Google Scholar
  97. M. S. Strano, M. Zheng, A. Jagota, G. B. Onoa, D. A. Heller, P. W. Barone, M. L. Usrey: Understanding the nature of the {DNA}-assisted separation of single-walled carbon nanotubes using fluorescence and raman spectroscopy, Nano Lett. 4, 543–550 (2004) Google Scholar
  98. S. R. Lustig, A. Jagota, C. Khripin, M. Zheng: Theory of structure-based carbon nanotube separations by ion-exchange chromatography of {DNA}/{CNT} hybrids, J. Phys. Chem. B 109, 2559–2566 (2005) Google Scholar
  99. M. S. Strano, C. B. Huffman, V. C. Moore, M. J. O'Connell, E. H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R. H. Hauge, R. E. Smalley: Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution, J. Phys. Chem. B 107, 6979–6985 (2003) Google Scholar
  100. M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, R. E. Smalley: Electronic structure control of single-walled carbon nanotube functionalization, Science 301, 1519–1522 (2003) Google Scholar
  101. M. L. Usrey, E. S. Lippmann, M. S. Strano: Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions, J. Am. Chem. Soc. 127, 16129–16135 (2005) Google Scholar
  102. C. J. Wang, Q. Cao, T. Ozel, A. Gaur, J. A. Rogers, M. Shim: Electronically selective chemical functionalization of carbon nanotubes: {C}orrelation between {R}aman spectral and electrical responses, J. Am. Chem. Soc. 127, 11460–11468 (2005) Google Scholar
  103. C. A. Dyke, M. P. Stewart, J. M. Tour: Separation of single-walled carbon nanotubes on silica gel. {M}aterials morphology and {R}aman excitation wavelength affect data interpretation, J. Am. Chem. Soc. 127, 4497–4509 (2005) Google Scholar
  104. S. Baik, M. Usrey, L. Rotkina, M. Strano: Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility, J. Phys. Chem. B 108, 15560–15564 (2004) Google Scholar
  105. M. S. Strano: Probing chiral selective reactions using a revised {K}ataura plot for the interpretation of single-walled carbon nanotube spectroscopy, J. Am. Chem. Soc. 125, 16148–16153 (2003) Google Scholar
  106. K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, R. C. Haddon: Covalent bond formation to a carbon nanotube metal, Science 301, 1501–1501 (2003) Google Scholar
  107. K. H. An, J. S. Park, C. M. Yang, S. Y. Jeong, S. C. Lim, C. Kang, J. H. Son, M. S. Jeong, Y. H. Lee: A diameter-selective attack of metallic carbon nanotubes by nitronium ions, J. Am. Chem. Soc. 127, 5196–5203 (2005) Google Scholar
  108. C. M. Yang, J. S. Park, K. H. An, S. C. Lim, K. Seo, B. Kim, K. A. Park, S. Han, C. Y. Park, Y. H. Lee: Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids, J. Phys. Chem. B 109, 19242–19248 (2005) Google Scholar
  109. C. M. Yang, K. H. An, J. S. Park, K. A. Park, S. C. Lim, S. H. Cho, Y. S. Lee, W. Park, C. Y. Park, Y. H. Lee: Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas, Phys. Rev. B 73, 075419 (2006) Google Scholar
  110. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber: Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104, 2794–2809 (2000) Google Scholar
  111. E. Joselevich: Chemistry and electronics of carbon nanotubes go together, Angew. Chem. Int. Ed. 43, 2992–2994 (2004) Google Scholar
  112. E. Joselevich: Electronic structure and chemical reactivity of carbon nanotubes: {A} chemist's view, Chem. Phys. Chem. 5, 619–624 (2004) Google Scholar
  113. Z. F. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes ({SWCNT}s) towards addition reactions: {D}ependence on the carbon-atom pyramidalization, Chem. Phys. Chem. 4, 93–97 (2003) Google Scholar
  114. R. E. Smalley, Y. B. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, J. M. Tour: Single wall carbon nanotube amplification: {E}n route to a type-specific growth mechanism, J. Am. Chem. Soc. 128, 15824–15829 (2006) Google Scholar
  115. Y. H. Wang, M. J. Kim, H. W. Shan, C. Kittrell, H. Fan, L. M. Ericson, W. F. Hwang, S. Arepalli, R. H. Hauge, R. E. Smalley: Continued growth of single-walled carbon nanotubes, Nano Lett. 5, 997–1002 (2005) Google Scholar
  116. M. J. Kim, E. Haroz, Y. Wang, H. Shan, N. Nicholas, C. Kittrell, V. C. Moore, Y. Jung, D. Luzzi, R. Wheeler, T. BensonTolle, H. Fan, S. Da, W. F. Hwang, T. J. Wainerdi, H. Schmidt, R. H. Hauge, R. E. Smalley: Nanoscopically flat open-ended single-walled carbon nanotube substrates for continued growth, Nano Lett. 7, 15–21 (2007) Google Scholar
  117. M. Hamm, J. A. Elliott, H. J. Smithson, A. H. Windle: Mater. Res. Soc. Symp. Proc. 788 (2004) Google Scholar
  118. S. Giordani, S. D. Bergin, V. Nicolosi, S. Lebedkin, M. M. Kappes, W. J. Blau, J. N. Coleman: Debundling of single-walled nanotubes by dilution: {O}bservation of large populations of individual nanotubes in amide solvent dispersions, J. Phys. Chem. B. 110, 15708–15718 (2006) Google Scholar
  119. M. S. P. Shaffer, X. Fan, A. H. Windle: Dispersion and packing of carbon nanotubes, Carbon 36, 1603–1612 (1998) Google Scholar
  120. P. J. Flory, P. R. Soc.: Phase equilibria in solutions of rod-like particles, London A 234, 73–89 (1956) Google Scholar
  121. W. H. Song, I. A. Kinloch, A. H. Windle: Nematic liquid crystallinity of multiwall carbon nanotubes, Science 302, 1363–1363 (2003) Google Scholar
  122. S. J. Zhang, I. A. Kinloch, A. H. Windle: Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes, Nano Lett. 6, 568–572 (2006) Google Scholar
  123. H. G. Chae, S. Kumar: Rigid-rod polymeric fibers, J. Appl. Polym. Sci. 100, 791–802 (2006) Google Scholar
  124. L. M. Ericson, H. Fan, H. Q. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. H. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley: Macroscopic, neat, single-walled carbon nanotube fibers, Science 305, 1447–1450 (2004) Google Scholar
  125. J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005) Google Scholar
  126. S. Zhang, K. K. K. Koziol, I. A. Kinloch, A. H. Windle: Carbon (2007) submitted Google Scholar
  127. A. Penicaud, L. Valat, A. Derre, P. Poulin, C. Zakri, O. Roubeau, M. Maugey, P. Miaudet, E. Anglaret, P. Petit, A. Loiseau, S. Enouz: Mild dissolution of carbon nanotubes: {C}omposite carbon nanotube fibres from polyelectrolyte solutions, Compos. Sci. Technol. 67, 795–797 (2007) Google Scholar
  128. L. X. Zheng, M. J. O'Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, Y. T. Zhu: Ultralong single-wall carbon nanotubes, Nature Mater. 3, 673–676 (2004) Google Scholar
  129. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000) Google Scholar
  130. P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002) Google Scholar
  131. H. H. Gommans, J. W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A. G. Rinzler: Fibers of aligned single-walled carbon nanotubes: {P}olarized {R}aman spectroscopy, J. Appl. Phys. 88, 2509–2514 (2000) Google Scholar
  132. B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 81, 1210–1212 (2002) Google Scholar
  133. P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment, Nano Lett. 5, 2212–2215 (2005) Google Scholar
  134. V. Pichot, S. Badaire, P. A. Albouy, C. Zakri, P. Poulin, P. Launois: Structural and mechanical properties of single-wall carbon nanotube fibers, Phys. Rev. B 74, 245416 (2006) Google Scholar
  135. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman: Super-tough carbon-nanotube fibres - {T}hese extraordinary composite fibres can be woven into electronic textiles, Nature 423, 703–703 (2003) Google Scholar
  136. A. Penicaud, P. Poulin, A. Derre, E. Anglaret, P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc. 127, 8–9 (2005) Google Scholar
  137. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, R. E. Smalley: Polyacrylonitrile single-walled carbon nanotube composite fibers, Adv. Mater. 16, 58–61 (2004) Google Scholar
  138. C. Y. Wang, V. Mottaghitalab, C. O. Too, G. M. Spinks, G. G. Wallace: Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte, J. Power Sources 163, 1105–1109 (2007) Google Scholar
  139. B. G. Min, T. V. Sreekumar, T. Uchida, S. Kumar: Oxidative stabilization of {PAN}/{SWNT} composite fiber, Carbon 43, 599–604 (2005) Google Scholar
  140. Y. P. Wang, R. L. Cheng, L. L. Liang, Y. M. Wang: Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber, Compos. Sci. Technol. 65, 793–797 (2005) Google Scholar
  141. K. L. Jiang, Q. Q. Li, S. S. Fan: Nanotechnology: {S}pinning continuous carbon nanotube yarns - {C}arbon nanotubes weave their way into a range of imaginative macroscopic applications, Nature 419, 801–801 (2002) Google Scholar
  142. M. Zhang, K. R. Atkinson, R. H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1358–1361 (2004) Google Scholar
  143. J. W. S. Hearle, P. Grosberg, S. Becker: Structural {M}echanics of {F}ibres, {Y}arns and {F}abrics (Wiley, New York 1969) Google Scholar
  144. Q. Li, X. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu: Poster presentation preprint, MRS Fall Meeting, Boston (2006) Google Scholar
  145. M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman: Strong, transparent, multifunctional, carbon nanotube sheets, Science 309, 1215–1219 (2005) Google Scholar
  146. Y. L. Li, I. A. Kinloch, A. H. Windle: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science 304, 276–278 (2004) Google Scholar
  147. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan: Direct synthesis of long single-walled carbon nanotube strands, Science 296, 884–886 (2002) Google Scholar
  148. M. Motta, A. Moisala, I. A. Kinloch, V. Premnath, M. Pick, A. H. Windle: The parameter space for the direct spinning of fibres and films of carbon nanotubes, Physica E 37, 40–43 (2007) Google Scholar
  149. M. Motta, Y. L. Li, I. Kinloch, A. Windle: Mechanical properties of continuously spun fibers of carbon nanotubes, Nano Lett. 5, 1529–1533 (2005) Google Scholar
  150. M. Motta, A. Moisala, I. Kinloch, A. H. Windle: High performance fibres from dog bone carbon nanotubes, Adv. Mater. 19, 3721–3726 (2007) Google Scholar
  151. R. F. Service: Assembling nanocircuits from the bottom up, Science 293, 782–785 (2001) Google Scholar
  152. S. M. Huang, L. M. Dai, A. W. H. Mau: Patterned growth and contact transfer of well-aligned carbon nanotube films, J. Phys. Chem. B. 103, 4223–4227 (1999) Google Scholar
  153. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P. M. Ajayan: Organized assembly of carbon nanotubes - {C}unning refinements help to customize the architecture of nanotube structures, Nature 416, 495–496 (2002) Google Scholar
  154. L. M. Dai, A. Patil, X. Y. Gong, Z. X. Guo, L. Q. Liu, Y. Liu, D. B. Zhu: Aligned nanotubes, Chem. Phys. Chem. 4, 1150–1169 (2003) Google Scholar
  155. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang: Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105–1107 (1998) Google Scholar
  156. S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999) Google Scholar
  157. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306, 1362–1364 (2004) Google Scholar
  158. Y. H. Yun, V. Shanov, Y. Tu, S. Subramaniam, M. J. Schulz: Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition, J. Phys. Chem. B. 110, 23920–23925 (2006) Google Scholar
  159. Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. T. Zhu: Sustained growth of ultralong carbon nanotube arrays for fiber spinning, Adv. Mater. 18, 3160–3163 (2006) Google Scholar
  160. H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga, T. Setoguchi: Gas analysis of the {CVD} process for high yield growth of carbon nanotubes over metal-supported catalysts, Carbon 44, 2912–2918 (2006) Google Scholar
  161. S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. J. Pan, Y. Nakayama: Growth of super long aligned brush-like carbon nanotubes, Jpn. J. Appl. Phys. 2 45, L720–L722 (2006) Google Scholar
  162. D. N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima: 84\,% {C}atalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach, J. Phys. Chem. B 110, 8035–8038 (2006) Google Scholar
  163. G. F. Zhong, T. Iwasaki, H. Kawarada: Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes, Carbon 44, 2009–2014 (2006) Google Scholar
  164. D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima: Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis, Phys. Rev. Lett. 95, 056104 (2005) Google Scholar
  165. T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, S. Iijima: Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nature Nanotechnol. 1, 131–136 (2006) Google Scholar
  166. T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima: Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils, J. Am. Chem. Soc. 128, 13338–13339 (2006) Google Scholar
  167. D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature Mater. 5, 987–994 (2006) Google Scholar
  168. Y. H. Yan, M. B. Chan-Park, Q. Zhang: Advances in carbon-nanotube assembly, Small 3, 24–42 (2007) Google Scholar
  169. J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, R. E. Smalley: Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates, Chem. Phys. Lett. 303, 125–129 (1999) Google Scholar
  170. C. Klinke, J. B. Hannon, A. Afzali, P. Avouris: Field-{E}ffect {T}ransistors {A}ssembled from {F}unctionalized {C}arbon {N}anotubes, Nano Lett. 6, 906–910 (2006) Google Scholar
  171. S. G. Rao, L. Huang, W. Setyawan, S. H. Hong: Large-scale assembly of carbon nanotubes, Nature 425, 36–37 (2003) Google Scholar
  172. Y. H. Wang, D. Maspoch, S. L. Zou, G. C. Schatz, R. E. Smalley, C. A. Mirkin: Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates, Proc. Nat. Acad. Sci. 103, 2026–2031 (2006) Google Scholar
  173. S. Zou, D. Maspoch, Y. Wang, C. A. Mirkin, G. C. Schatz: Rings of {S}ingle-{W}alled {C}arbon {N}anotubes: {M}olecular-{T}emplate {D}irected {A}ssembly and {M}onte {C}arlo {M}odeling, Nano Lett. 7, 276–280 (2007) Google Scholar
  174. A. L. Bassi, M. G. Beghi, C. S. Casari, C. E. Bottani, A. Podesta, P. Milani, A. Zakhidov, R. Baughman, D. A. Walters, R. E. Smalley: Inelastic light scattering from magnetically aligned single-walled carbon nanotubes and estimate of their two-dimensional {Y}oung's modulus, Diam. Relat. Mater. 12, 806–810 (2003) Google Scholar
  175. M. J. Casavant, D. A. Walters, J. J. Schmidt, R. E. Smalley: Neat macroscopic membranes of aligned carbon nanotubes, J. Appl. Phys. 93, 2153–2156 (2003) Google Scholar
  176. J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, R. E. Smalley: Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties, J. Appl. Phys. 93, 2157–2163 (2003) Google Scholar
  177. D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley: In-plane-aligned membranes of carbon nanotubes, Chem. Phys. Lett. 338, 14–20 (2001) Google Scholar
  178. B. W. Smith, Z. Benes, D. E. Luzzi, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, R. E. Smalley: Structural anisotropy of magnetically aligned single wall carbon nanotube films, Appl. Phys. Lett. 77, 663–665 (2000) Google Scholar
  179. M. D. Lay, J. P. Novak, E. S. Snow: Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes, Nano Lett. 4, 603–606 (2004) Google Scholar
  180. J. Q. Li, Q. Zhang, N. Peng, Q. Zhu: Manipulation of carbon nanotubes using {AC} dielectrophoresis, Appl. Phys. Lett. 86, 153116 (2005) Google Scholar
  181. J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L. C. Qin, O. Zhou: Rapid and reproducible fabrication of carbon nanotube {AFM} probes by dielectrophoresis, Nano Lett. 5, 11–14 (2005) Google Scholar
  182. J. Tang, B. Gao, H. Z. Geng, O. D. Velev, L. C. Qin, O. Zhou: Assembly of {ID} nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis, Adv. Mater. 15, 1352–1355 (2003) Google Scholar
  183. R. Krupke, F. Hennrich, H. B. Weber, D. Beckmann, O. Hampe, S. Malik, M. M. Kappes, H. V. Lohneysen: Contacting single bundles of carbon nanotubes with alternating electric fields, Appl. Phys. A-Mater. 76, 397–400 (2003) Google Scholar
  184. X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, H. Dai: Langmuir-{B}lodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials, J. Am. Chem. Soc. 129, 4890–4891 (2007) Google Scholar
  185. J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395, 878–881 (1998) Google Scholar
  186. E. Joselevich, C. M. Lieber: Vectorial growth of metallic and semiconducting single-wall carbon nanotubes, Nano Lett. 2, 1137–1141 (2002) Google Scholar
  187. L. X. Benedict, S. G. Louie, M. L. Cohen: Static {P}olarizabilities of {S}ingle-{W}all {C}arbon {N}anotubes, Phys. Rev. B 52, 8541–8549 (1995) Google Scholar
  188. Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong, H. J. Dai: Electric-field-directed growth of aligned single-walled carbon nanotubes, Appl. Phys. Lett. 79, 3155–3157 (2001) Google Scholar
  189. A. Ural, Y. M. Li, H. J. Dai: Electric-field-aligned growth of single-walled carbon nanotubes on surfaces, Appl. Phys. Lett. 81, 3464–3466 (2002) Google Scholar
  190. A. Nojeh, A. Ural, R. F. Pease, H. J. Dai: Electric-field-directed growth of carbon nanotubes in two dimensions, J. Vac. Sci. Technol. B 22, 3421–3425 (2004) Google Scholar
  191. A. Ismach, E. Joselevich: Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth, Nano Lett. 6, 1706–1710 (2006) Google Scholar
  192. S. Dittmer, J. Svensson, E. E. B. Campbell: Electric field aligned growth of single-walled carbon nanotubes, Curr. Appl. Phys. 4, 595–598 (2004) Google Scholar
  193. I. Radu, Y. Hanein, D. H. Cobden: Oriented growth of single-wall carbon nanotubes using alumina patterns, Nanotechnol. 15, 473–476 (2004) Google Scholar
  194. C. Kocabas, M. A. Meitl, A. Gaur, M. Shim, J. A. Rogers: Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation, Nano Lett. 4, 2421–2426 (2004) Google Scholar
  195. K. H. Lee, J. M. Cho, W. Sigmund: Control of growth orientation for carbon nanotubes, Appl. Phys. Lett. 82, 448–450 (2003) Google Scholar
  196. N. Kumar, W. Curtis, J. I. Hahm: Laterally aligned, multiwalled carbon nanotube growth using {M}agnetospirillium magnetotacticum, Appl. Phys. Lett. 86, 173101 (2005) Google Scholar
  197. S. M. Huang, X. Y. Cai, J. Liu: Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates, J. Am. Chem. Soc. 125, 5636–5637 (2003) Google Scholar
  198. S. M. Huang, Q. Fu, L. An, J. Liu: Growth of aligned {SWNT} arrays from water-soluble molecular clusters for nanotube device fabrication, Phys. Chem. Chem. Phys. 6, 1077–1079 (2004) Google Scholar
  199. S. M. Huang, B. Maynor, X. Y. Cai, J. Liu: Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces, Adv. Mater. 15, 1651–1655 (2003) Google Scholar
  200. S. M. Huang, X. Y. Cai, C. S. Du, J. Liu: Oriented long single walled carbon nanotubes on substrates from floating catalysts, J. Phys. Chem. B 107, 13251–13254 (2003) Google Scholar
  201. S. D. Li, Z. Yu, C. Rutherglen, P. J. Burke: Electrical properties of 0.4 cm long single-walled carbon nanotubes, Nano Lett. 4, 2003–2007 (2004) Google Scholar
  202. Z. Yu, S. D. Li, P. J. Burke: Synthesis of aligned arrays of millimeter long, straight single-walled carbon nanotubes, Chem. Mater. 16, 3414–3416 (2004) Google Scholar
  203. B. H. Hong, J. Y. Lee, T. Beetz, Y. M. Zhu, P. Kim, K. S. Kim: Quasi-continuous growth of ultralong carbon nanotube arrays, J. Am. Chem. Soc. 127, 15336–15337 (2005) Google Scholar
  204. W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, Y. Li: Copper catalyzing growth of single-walled carbon nanotubes on substrates, Nano Lett. 6, 2987–2990 (2006) Google Scholar
  205. D. E. Hooks, T. Fritz, M. D. Ward: Epitaxy and molecular organization on solid substrates, Adv. Mater. 13, 227–241 (2001) Google Scholar
  206. A. Ismach, D. Kantorovich, E. Joselevich: Carbon nanotube graphoepitaxy: {H}ighly oriented growth by faceted nanosteps, J. Am. Chem. Soc. 127, 11554–11555 (2005) Google Scholar
  207. M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu, J. Liu: Lattice-oriented growth of single-walled carbon nanotubes, J. Phys. Chem. B 104, 6505–6508 (2000) Google Scholar
  208. M. Tominaga, A. Ohira, A. Kubo, I. Taniguchi, M. Kunitake: Growth of carbon nanotubes on a gold(111) surface using two-dimensional iron oxide nano-particle catalysts derived from iron storage protein, Chem. Commun. pp. 1518–1519 (2004) Google Scholar
  209. V. Derycke, R. Martel, M. Radosvljevic, F. M. R. Ross, P. Avouris: Catalyst-free growth of ordered single-walled carbon nanotube networks, Nano Lett. 2, 1043–1046 (2002) Google Scholar
  210. L. B. Ruppalt, P. M. Albrecht, J. W. Lyding: Atomic resolution scanning tunneling microscope study of single-wailed carbon nanotubes on {GaAs}(110), J. Vac. Sci. Technol. B. 22, 2005–2007 (2004) Google Scholar
  211. L. B. Ruppalt, P. M. Albrecht, J. W. Lyding: {UHV-STM} study of single-walled carbon nanotubes applied to the {GaAs}(110) and {InAs}(110) surfaces, J. Phys. IV 132, 31–34 (2006) Google Scholar
  212. A. Ismach, L. Segev, E. Wachtel, E. Joselevich: Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43, 6140–6143 (2004) Google Scholar
  213. S. Han, X. L. Liu, C. W. Zhou: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire, J. Am. Chem. Soc. 127, 5294–5295 (2005) Google Scholar
  214. H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji: Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface, Chem. Phys. Lett. 408, 433–438 (2005) Google Scholar
  215. H. Ago, N. Uehara, K. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji: Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized {R}aman spectroscopy, Chem. Phys. Lett. 421, 399–403 (2006) Google Scholar
  216. Q. K. Yu, G. T. Qin, H. Li, Z. H. Xia, Y. B. Nian, S. S. Pei: Mechanism of horizontally aligned growth of single-wall carbon nanotubes on {R}-plane sapphire, J. Phys. Chem. B 110, 22676–22680 (2006) Google Scholar
  217. X. L. Liu, S. Han, C. W. Zhou: Novel nanotube-on-insulator {(NOI)} approach toward single-walled carbon nanotube devices, Nano Lett. 6, 34–39 (2006) Google Scholar
  218. M. Maret, K. Hostache, M. C. Schouler, B. Marcus, F. Roussel-Dherbey, M. Albrecht, P. Gadelle: Oriented growth of single-walled carbon nanotubes on a {MgO}(001) surface, Carbon 45, 180–187 (2007) Google Scholar
  219. M. Souza, A. Jorio, C. Fantini, B. R. A. Neves, M. A. Pimenta, R. Saito, A. Ismach, E. Joselevich, V. W. Brar, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus: Single- and double-resonance {R}aman {G}-band processes in carbon nanotubes, Phys. Rev. B 69, 241403 (2004) Google Scholar
  220. A. Ismach, D. Kantorovich, J. Berson, N. Geblinger, L. Segev, E. Wachtel, H. Son, A. Jorio, M. S. Dresselhaus, G. Dresselhaus, E. Joselevich: Epitaxial {M}odes of {C}arbon {N}anotube {G}rowth on {V}icinal a-{Al2O3} (0001) {S}urfaces, unpublished Google Scholar
  221. C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors, Small 1, 1110–1116 (2005) Google Scholar
  222. C. Kocabas, M. Shim, J. A. Rogers: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices, J. Am. Chem. Soc. 128, 4540–4541 (2006) Google Scholar
  223. H. I. Smith, D. C. Flanders: Oriented {C}rystal-{G}rowth on {A}morphous {S}ubstrates {U}sing {A}rtificial {S}urface-{R}elief {G}ratings, Appl. Phys. Lett. 32, 349–350 (1978) Google Scholar
  224. R. A. Segalman, H. Yokoyama, E. J. Kramer: Graphoepitaxy of spherical domain block copolymer films, Adv. Mater. 13, 1152–1155 (2001) Google Scholar
  225. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000) Google Scholar
  226. A. Javey, H. J. Dai: Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials, J. Am. Chem. Soc. 127, 11942–11943 (2005) Google Scholar
  227. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov: Atomic-scale imaging of carbon nanofibre growth, Nature 427, 426–429 (2004) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ernesto Joselevich
    • 1
  • Hongjie Dai
    • 2
  • Jie Liu
    • 3
  • Kenji Hata
    • 4
  • Alan H. Windle
    • 5
  1. 1.Department ofMaterials and InterfacesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of ChemistryStanford UniversityStanfordUSA
  3. 3.Department of ChemistryDuke UniversityDurhamUSA
  4. 4.Research Center for Advanced Carbon MaterialsNationalInstitute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  5. 5.Department of Materials Science andMetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations