Skip to main content

Doped Carbon Nanotubes: Synthesis, Characterization and Applications

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

Various applications of carbon nanotubes require their chemical modification inorder to tune/control their physicochemical properties. One way for achieving thiscontrol is by carrying out doping processes through which atoms and moleculesinteract (covalently or noncovalently) with the nanotube surfaces. The aim of thischapter is to emphasize the importance of different types of doping in carbonnanotubes (single-, double- and multiwall). There are three main categories ofdoping: exohedral, endohedral and inplane doping. We will review the most efficientways to dope carbon nanotubes and discuss the effects on the electronic, vibrational,chemical, magnetic and mechanical properties. In addition, we will discuss thedifferent ways of characterizing these doped nanotubes using spectroscopictechniques, such as resonant Raman, X-ray photoelectron, electron energy lossspectroscopy and others. It will be demonstrated that doped carbon nanotubes couldbe used in the fabrication of nanodevices (e.g., sensors, protein immobilizers,field emission sources, efficient composite fillers, etc.). We will also presentresults related to the importance of inplane-doped nanotubes for attachingvarious metal clusters and polymers covalently using wet chemical routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic Press, New York 1996)

    Google Scholar 

  • J. Sloan, M. Terrones, S. Nufer, S. Friedrichs, S. R. Bailey, H. G. Woo, M. Ruhle, J. L. Hutchison, M. L. H. Green: Metastable one-dimensional {AgCl1-xIx} solid-solution wurzite ``tunnel'' crystals formed within single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 2116 (2002)

    Google Scholar 

  • A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from {Raman} scattering, Nature 388, 257 (1997)

    Google Scholar 

  • R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley: Conductivity enhancement in single-walled carbon nanotube bundles doped with {K} and {Br}, Nature 388, 255 (1997)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus: Intercalationındex{intercalation} compounds of graphite, Adv. Phys. 30, 139 (1981)

    Google Scholar 

  • S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, Y. Achiba: Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy, Phys. Rev. B 60, 13339 (1999)

    Google Scholar 

  • M. R. Pederson, J. Q. Broughton: Nanocapillarity in fullerene tubules, Phys. Rev. Lett. 69, 2689 (1992)

    Google Scholar 

  • P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522 (1993)

    Google Scholar 

  • M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809 (2002)

    Google Scholar 

  • D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato: Chemistry of carbon nanotubes, Chem. Rev. 106, 1105 (2006)

    Google Scholar 

  • Z. Y. Wang, Z. B. Zhao, J. S. Qiu: Development of filling carbon nanotubes, Prog. Chem. 18, 563 (2006)

    Google Scholar 

  • M. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu, W. B. Hu, H. Terrones, J. P. Hare, H. W. Kroto, D. R. M. Walton: Advances in the creation of filled nanotubes and novel nanowires, Mater. Res. Soc. Bull. 24, 43 (1999)

    Google Scholar 

  • S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603 (1993)

    Google Scholar 

  • D. S. Bethune, C. H. Kiang, M. S. D. Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature 363, 605 (1993)

    Google Scholar 

  • B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated {C60} in carbon nanotubes, Nature 296, 323 (1998)

    Google Scholar 

  • J. Sloan, J. Hammer, M. Z. Sibley, M. L. H. Green: The opening and filling of single walled carbon nanotubes ({SWTs}), Chem. Commun. 3, 347 (1998)

    Google Scholar 

  • C. H. Kiang, J. S. Choi, T. T. Tran, A. D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449 (1999)

    Google Scholar 

  • P. Corio, A. P. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, M. S. Dresselhaus: Chem. Phys. Lett. 383, 475 (2004)

    Google Scholar 

  • A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles, Chem. Mater. 12, 205 (2000)

    Google Scholar 

  • J. Sloan, D. M. Wright, H. G. Woo, S. R. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun. 700, 699 (1999)

    Google Scholar 

  • R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison, M. L. H. Green: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science 289, 1324 (2000)

    Google Scholar 

  • D. E. Luzzi, B. W. Smith: Carbon cage structures in single wall carbon nanotubes: a new class of materials, Carbon 38, 1751 (2000)

    Google Scholar 

  • E. Hernández, V. Meunier, B. W. Smith, R. Rurali, H. Terrones, Buongiorno, N. Nardelli, M. Terrones, D. E. Luzzi, J. C. Charlier: Fullerene coalescence in nanopeapods: A path to novel tubular carbon, Nano Lett. 3, 1037 (2003)

    Google Scholar 

  • K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallofulerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384 (2000)

    Google Scholar 

  • A. Khlobystov, D. A. Britz, A. Ardavan, G. A. D. Briggs: Observation of ordered phases of fullerenes in carbon nanotubes, Phys. Rev. Lett. 92, 245507 (2004)

    Google Scholar 

  • D. Ugarte, T. Stockli, J. M. Bonard, A. Chatelain, W. A. D. Heer: Filling carbon nanotubes, Appl. Phys. A 67, 101 (1998)

    Google Scholar 

  • A. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, C. J. Burnham: Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93, 035503 (2004)

    Google Scholar 

  • L. J. Li, A. N. Khlobystov, J. G. Wiltshire, G. A. Briggs, R. J. Nicholas: Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes, Nature Mater. 4, 481 (2005)

    Google Scholar 

  • H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, S. Iijima, S. Suzuki, W. Krätschmer, Y. Achiba: Fullerene-peapods: Synthesis, structure, and {Raman} spectroscopy, in H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.): Electronic Properties of Molecular Nanostructures, AIP Proc. 591 (2001) p. 251

    Google Scholar 

  • C. E. Lowell: Solid solution of boron in graphite, J. Am. Ceram. Soc. 50, 142 (1966)

    Google Scholar 

  • C. T. Hach, L. E. Jones, C. Crossland, P. A. Thrower: An investigation of vapor deposited boron rich carbon – a novel graphite-like material – part {I}: the structure of {BCx (C6B)} thin films, Carbon 37, 221 (1999)

    Google Scholar 

  • A. Oya, R. Yamashita, S. Otani: Catalytic graphitization of carbons by borons, Fuel 58, 495 (1979)

    Google Scholar 

  • M. Endo, T. Hayashi, S. H. Hong, T. Enoki, M. S. Dresselhaus: Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite, J. Appl. Phys. 90, 5670 (2001)

    Google Scholar 

  • M. Endo, C. Kim, T. Karaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus: Anode performance of a {Li} ion battery based on graphitized and {B}-doped milled mesophase pitch-based carbon fibers, Carbon 37, 561 (1999)

    Google Scholar 

  • A. Marchand, J. V. Zanchetta: Proprietes electroniques d'un carbone dope a l'azote, Carbon 3, 483 (1966)

    Google Scholar 

  • K. Takeya, K. Yazawa: Unusual galvanomagnetic properties of pyrolytic graphite, J. Phys. Soc. Jpn. 19, 138 (1964)

    Google Scholar 

  • K. T. K. Yazawa, N. Okuyama, H. Akutsu: Evidence for existence of extremely light carriers in pyrolytic carbons, Phys. Rev. Lett. 15, 111 (1965)

    Google Scholar 

  • T. Belz, A. Baue, J. Find, M. Günter, D. Herein, H. Möckel, N. Pfänder, H. Sauer, G. Schulz, J. Schütze, O. Timpe, U. Wild, R. Schlögi: Structural and chemical characterization of {N}-doped nanocarbons, Carbon 36, 731 (1998)

    Google Scholar 

  • E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of {C} and {B}x{C}y{N}z composite nanotubes, Phys. Rev. Lett. 80, 4502 (1999)

    Google Scholar 

  • E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of single-wall nanotubes, Appl. Phys. A. Mater 68, 287 (1999)

    Google Scholar 

  • R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. de Heer, L. M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622 (2000)

    Google Scholar 

  • R. J. Baierle, S. B. Fagan, R. Mota, A. J. R. da Silva, A. Fazzio: Electronic and structural properties of silicon-doped carbon nanotubes, Phys. Rev. 64, 085413 (2001)

    Google Scholar 

  • E. Cruz-Silva, D. Cullen, L. Gu, J. M. Romo-Herrera, E. {Muñoz}-Sandoval, F. L\'opez-Ur\'ias, D. J. Smith, H. Terrones, M. Terrones: Hetero-doped nanotubes: Theory, synthesis and characterization of phosphorous-nitrogen doped multiwalled carbon nanotubes submitted

    Google Scholar 

  • S. B. Fagan, R. Mota, R. J. Baierle, A. J. R. da Silva, A. Fazzio: Ab initio study of an organic molecule interacting with a silicon-doped carbon nanotube, Diam. Relat. Mater. 12, 861 (2003)

    Google Scholar 

  • O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683 (1994)

    Google Scholar 

  • P. Redlich, L. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. Ruhle: {B}-{C}-{N} nanotubes and boron doping of carbon nanotubes, Chem. Phys. Lett. 260, 465 (1996)

    Google Scholar 

  • M. Terrones, W. K. Hsu, S. Ramos, R. Castillo, H. Terrones: The role of boron nitride in graphite plasma arcs, Full. Sci. Tech. 6, 787 (1998)

    Google Scholar 

  • W. K. Hsu, M. Terrones: unpublished results

    Google Scholar 

  • M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, P. Bernier: Synthesis of {N}-doped {SWNT} using the arc-discharge procedure, Chem. Phys. Lett. 387, 193 (2004)

    Google Scholar 

  • Y. Zhang, H. Gu, K. Suenaga, S. Iijima: Heterogeneous growth of {B}–{C}–{N} nanotubes by laser ablation, Chem. Phys. Lett. 279, 264 (1997)

    Google Scholar 

  • P. Gai, O. Stephan, K. McGuire, A. M. Rao, M. S. Dresselhaus, G. Dresselhaus, C. Colliex: Structural systematics in boron-doped single wall carbon nanotubes, J. Mater. Chem. 14, 669 (2004)

    Google Scholar 

  • M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton: Controlled production of aligned-nanotube bundles, Nature 388, 52 (1997)

    Google Scholar 

  • M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Ruhle, H. W. Kroto, D. R. M. Walton: Carbon nitride nanocomposites: Formation of aligned {C}x{N}y nanofibers, Adv. Mater. 11, 655 (1999)

    Google Scholar 

  • R. Sen, B. C. Satishkumar, S. Govindaraj, K. R. Harikumar, M. K. Renganathan, C. N. R. Rao: Nitrogen-containing carbon nanotubes, J. Mater. Chem. 7, 2335 (1997)

    Google Scholar 

  • G. Keskar, R. Rao, J. Luo, J. Hudson, A. M. Rao: Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors, Chem. Phys. Lett. 412, 269 (2005)

    Google Scholar 

  • F. Villalpando-Paez, A. Zamudio, A. L. Elias, H. Son, E. B. Barros, S. Chou, Y. A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M. S. Dresselhaus: Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes, Chem. Phys. Lett. 424, 345 (2006)

    Google Scholar 

  • D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and {HRTEM} analysis of single-walled {B}- and {N}-doped carbon nanotube bundles, Carbon 38, 2017 (2000)

    Google Scholar 

  • E. Borowiak-Palen, T. Pichler, G. G. Fuentes, A. Graff, R. J. Kalenczuk, M. Knupfer, J. Fink: Efficient production of {B}-substituted single-wall carbon nanotubes, Chem. Phys. Lett. 378, 516 (2003)

    Google Scholar 

  • M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, G. V. Lier, J. C. Charlier, H. Terrones, M. Terrones, M. S. Dresselhaus: Atomic nanotube welders: Boron interstitials triggering connections in double-walled carbon nanotubes, Nano Lett. 5, 1099 (2005)

    Google Scholar 

  • E. G. Wang, Z. G. Guo, J. Ma, M. M. Zhou, Y. K. Pu, S. Liu, G. Y. Zhang, D. Y. Zhong: Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth, Carbon 41, 1827 (2003)

    Google Scholar 

  • K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat: Uniform patterned growth of carbon nanotubes without surface carbon, Appl. Phys. Lett. 79, 1534 (2001)

    Google Scholar 

  • K. Teo, D. B. Hash, R. G. Lacerda, N. L. Rupesinghe, M. S. Bell, S. H. Dalal, D. Bose, T. R. Govindan, B. A. Cruden, M. Chhowalla, G. A. J. Amaratunga, J. M. Meyyappan, W. I. Milne: The significance of plasma heating in carbon nanotube and nanofiber growth, Nano Lett. 4, 921 (2004)

    Google Scholar 

  • J. Yu, X. D. Bai, J. Ahn, S. F. Yoon, E. G. Wang: Highly oriented rich boron {B}–{C}–{N} nanotubes by bias-assisted hot filament chemical vapor deposition, Chem. Phys. Lett. 323, 529 (2000)

    Google Scholar 

  • A. Jorio, M. A. Pimenta, A. G. {Souza Filho}, R. Saito, M. S. Dresselhaus, G. Dresselhaus: {Characterizing} carbon nanotube samples with resonance {Raman} scattering, New J. Phys. 5, 137 (2003)

    Google Scholar 

  • K. Koziol, M. S. Shaffer, A. H. Windle: Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition, Adv. Mater. 17, 760 (2005)

    Google Scholar 

  • C. Ducati, K. Koziol, S. Friedrichs, T. J. V. Yates, M. S. Shaffer, P. A. Midgkey, A. H. Windle: Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen, Small 2, 774 (2006)

    Google Scholar 

  • P. Kohler-Redlich, M. Terrones: Detection of {B} using {EELS} within {B}-doped carbon nanotubes, Unpublished results

    Google Scholar 

  • X. Blase, J.-C. Charlier, A. D. Vita, R. Car, P. Redlich, Ph, M. Terrones, W. K. Hsu, H. Terrones, D. L. Carroll, P. M. Ajayan: Boron-mediated growth of long helicity-selected carbon nanotubes, Phys. Rev. Lett. 83, 5078, (1999)

    Google Scholar 

  • W. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q, Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Kroto, D. R. M. Walton: Boron doping effects in carbon nanotubes, J. Mater. Chem. 10, 1425 (2000)

    Google Scholar 

  • E. Hernández, P. OrdejÏŒn, I. Boustani, A. Rubio, J. A. Alonso: Tight binding molecular dynamics stuides of boron assisted nanotube growth, J. Chem. Phys. 113, 3814 (2000)

    Google Scholar 

  • M. Terrones, N. Grobert, H. Terrones: Synthetic routes to nanoscale {B}x{C}y{N}z architectures, Carbon 40, 1665 (2002)

    Google Scholar 

  • K. McGuire, N. Gothard, P. Gai, M. Dresselhaus, G. Sumanasekera, A. Rao: Synthesis and {Raman} characterization of boron-doped single-walled carbon nanotubes, Carbon 43, 219 (2005)

    Google Scholar 

  • M. Terrones, W. K. Hsu, A. Schilder, H. Terrones, N. Grobert, J. P. Hare, Y. Q. Zhu, M. Schwoerer, K. Prassides, H. W. Kroto, D. R. M. Walton: Novel nanotubes and encapsulated nanowires, Appl. Phys. A-Mater. 66, 307 (1998)

    Google Scholar 

  • D. Carroll, P. Redlich, X. Blase, J. C. Charlier, S. Curran, P. M. Ajayan, S. Roth, M. Ruhle: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes, Phys. Rev. Lett. 81, 2332 (1998)

    Google Scholar 

  • R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, D. L. Carroll: {Identification} of electron donor states in {N}-doped carbon nanotubes, Nano Lett. 1, 457 (2001)

    Google Scholar 

  • K. Liu, P. Avouris, R. Martel, W. K. Hsu: Electrical transport in doped multiwalled carbon nanotubes, Phys. Rev. B 63, 161404 (2001)

    Google Scholar 

  • D. Golberg, P. S. Dorozhkin, Y. Bando, Z. C. Dong, C. C. Tang, Y. Uemura, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones: {Structure}, transport and field-emission properties of compound nanotubes: {CN}_x vs. {BNC}_x (x < 0.1), Appl. Phys. A-Mater. 76, 499 (2003)

    Google Scholar 

  • S. Latil, S. Roche, D. Mayou, J.-C. Charlier: Mesoscopic transport in chemically doped carbon nanotubes, Phys. Rev. Lett. 92, 256805 (2004)

    Google Scholar 

  • W. K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, S. Firth, P. Franchi, B. P. Roberts, A. Schilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572 (2000)

    Google Scholar 

  • Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J. C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, Y. W. Park: Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states, Nano Lett. 3, 839 (2003)

    Google Scholar 

  • L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, P. C. Eklund: Transport properties of alkali-metal-doped single-wall carbon nanotubes, Phys. Rev. B 58, 4195 (1998)

    Google Scholar 

  • K. Bradley, S. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, A. Zettl: Is the intrinsic thermoelectric power of carbon nanotubes positive?, Phys. Rev. Lett. 85, 4361 (2000)

    Google Scholar 

  • S. Bandow, A. M. Rao, G. U. Sumanasekera, P. C. Eklund, F. Kokai, K. Takahashi, S. Iijima: {Evidence} for anomalously small charge transfer in doped single-wall carbon nanohorn aggregates with {Li}, {K} and {Br}, Appl. Phys. A-Mater. 71, 561 (2000)

    Google Scholar 

  • M. S. Dresselhaus, P. C. Eklund: Phonons in carbon nanotubes, Adv. Phys. 40, 705 (2000)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. {Souza Filho}, R. Saito: Raman spectroscopy on isolated single wall carbon nanotubes, Carbon 40, 2043 (2002)

    Google Scholar 

  • A. Kukovecz, T. Pichler, R. Pfeiffer, H. Kuzmany: {Diameter} selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the {HiPCO} method, Chem. Commun. 5, 1730 (2002)

    Google Scholar 

  • A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: {Structural} (n, m) determination of isolated single-wall carbon nanotubes by resonant {Raman} scattering, Phys. Rev. Lett. 86, 1118 (2001)

    Google Scholar 

  • A. G. {Souza Filho}, A. Jorio, G. G. Samsonidze, G. Dresselhaus, R. Saito, M. S. Dresselhaus: Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes, Nanotechnol. 14, 1130 (2003)

    Google Scholar 

  • Y. A. Kim, M. Kojima, H. Muramatsu, S. Umemoto, T. Watanabe, K. Yoshida, K. Sato, T. Ikeda, T. Hayashi, M. Endo, M. Terrones, M. S. Dresselhaus: In situ {Raman} study on single- and double-walled carbon nanotubes as a function of lithium insertion, Small 2, 667–676 (2006)

    Google Scholar 

  • B. Akdim, X. Duan, D. A. Shiffler, R. Pachter: Theoretical study of the effects of alkali-metal atoms adsorption on {Raman} spectra of single-wall carbon nanotubes, Phys. Rev. B 72, 121402 (2005)

    Google Scholar 

  • H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler: Functionalization of carbon nanotubes, Synth. Met. 141, 113 (2004)

    Google Scholar 

  • S. B. Fagan, A. G. {Souza Filho}, J. {Mendes Filho}, P. Corio, M. S. Dresselhaus: {Electronic} properties of {Ag}- and {CrO}3-filled single-wall carbon nanotubes, Chem. Phys. Lett. 456, 54 (2005)

    Google Scholar 

  • P. Corio, A. P. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, M. S. Dresselhaus: Characterization of single wall carbon nanotubes filled with silver and with chromium compounds, Chem. Phys. Lett. 383, 475 (2004)

    Google Scholar 

  • G. Chen, C. A. Furtado, U. J. Kim, P. C. Eklund: Alkali-metal-doping dynamics and anomalous lattice contraction of individual debundled carbon nanotubes, Phys. Rev. B 72, 155406 (2005)

    Google Scholar 

  • G. Chen, C. A. Furtado, S. Bandow, S. Iijima, P. C. Eklund: {Anomalous} contraction of the {C}–{C} bond length in semiconducting carbon nanotubes observed during {Cs} doping, Phys. Rev. B 71, 045408 (2005)

    Google Scholar 

  • L. Terrazos, R. B. Capaz: unpublished results

    Google Scholar 

  • T. Pichler, A. Kukovecz, H. Kuzmany, H. Kataura: Charge transfer in doped single wall carbon nanotubes, Synth. Met. 135-136, 717 (2003)

    Google Scholar 

  • S. Guerini, A. G. {Souza Filho}, J. M. Filho, O. L. Alves, S. B. Fagan: {Electronic} properties of {FeCl}3-adsorbed single-wall carbon nanotubes, Phys. Rev. B 72, 233401 (2005)

    Google Scholar 

  • A. Rakitin, C. Papadopoulos, J. M. Xu: Carbon nanotube self-doping: Calculation of the hole carrier concentration, Phys. Rev. B 67, 033411 (2003)

    Google Scholar 

  • A. G. {Souza Filho}, M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, E. B. Barros, N. Akuzawa, G. G. Samsonidze, R. Saito, M. S. Dresselhaus: {Resonance} {Raman} scattering studies in {Br}-2-adsorbed double-wall carbon nanotubes, Phys. Rev. B 73, 235413 (2006)

    Google Scholar 

  • T. C. Chieu, M. S. Dresselhaus, M. Endo: Raman studies of benzene-derived graphite fibers, Phys. Rev. B 26, 5867 (1982)

    Google Scholar 

  • M. Endo, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. Villalpando-Paez, S. G. Chou, M. S. Dresselhaus: Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems, Small 2, 1031 (2006)

    Google Scholar 

  • C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. V. Lier, J. C. Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, M. A. Pimenta: Resonance {Raman} study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes, Phys. Rev. B 73, 193408 (2006)

    Google Scholar 

  • V. Georgakilas, D. Voulgaris, E. Vazquez, M. Prato, D. M. Guldi, A. Kukovecz, H. Kuzmany: Purification of {HiPCO} carbon nanotubes via organic functionalization, J. Am. Chem. Soc. 124, 14318 (2002)

    Google Scholar 

  • M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. Richardson, N. G. Tassi: {DNA}-assisted dispersion and separation of carbon nanotubes, Nature Mater. 2, 338 (2003)

    Google Scholar 

  • M. Zheng, A. Jagota., M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Ursey, D. J. Walls: {Structure}-based carbon nanotube sorting by sequence-dependent {DNA} assembly, Science 302, 1545 (2003)

    Google Scholar 

  • D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, M. S. Strano: {Optical} detection of {DNA} conformational polymorphism on single-walled carbon nanotubes, Science 311, 508 (2006)

    Google Scholar 

  • J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, G. A. J. Amaratunga: {Enhanced} electron field emission in {B}-doped carbon nanotubes, Nano Lett. 2, 1191 (2002)

    Google Scholar 

  • M. Doytcheva, M. Kaiser, M. Reyes-Reyes, M. Terrones, N. de Jonge: Electron emission from individual nitrogen-doped multi-walled carbon nanotubes, Chem. Phys. Lett. 396, 126 (2004)

    Google Scholar 

  • M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M. S. Dresselhaus: {Vapor}-grown carbon fibers ({VGCFs}) – {Basic} properties and their battery applications, Carbon 39, 1287 (2001)

    Google Scholar 

  • D. Y. Zhang, G. Y. Zhang, S. Liu, E. G. Wang, Q. Wang, H. Li, X. J. Huang: Lithium storage in polymerized carbon nitride nanobells, Appl. Phys. Lett. 79, 3500 (2001)

    Google Scholar 

  • J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000)

    Google Scholar 

  • S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–55 (1998)

    Google Scholar 

  • P. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000)

    Google Scholar 

  • F. Villalpando-Páez, A. H. Romero, E. Munoz-Sandoval, L. M. Martinez, H. Terrones, M. Terrones: {Fabrication} of vapor and gas sensors using films of aligned {CN}x nanotubes, Chem. Phys. Lett. 386, 137 (2004)

    Google Scholar 

  • P. Calvert: Nanotube composites – a recipe for strength, Nature 399, 210 (1999)

    Google Scholar 

  • A. Eitan, L. S. Schadler, J. Hansen, P. M. Ajayan, R. W. Siegel, M. Terrones, N. Grobert, M. Reyes-Reyes, M. Mayne, H. Terrones: Processing and thermal characterization of nitrogen doped {MWNT}/epoxy composites, in Proc. Tenth US–Japan Conf. Compos. Mater. (2002) pp. 634–640

    Google Scholar 

  • B. Fragneaud, K. Masenelli-Varlot, A. González-Montiel, M. Terrones, J. Y. Cavaillé: {Efficient} coating of {N}-doped carbon nanotubes with polystayrene using atomic transfer radical polymerization, Chem. Phys. Lett. 419, 567 (2005)

    Google Scholar 

  • M. Dehonor, K. Masenelli-Varlot, A. González-Montiel, C. Gauthier, J. Y. Cavaillé, H. Terrones, M. Terrones: Nanotube brushes: Polystyrene grafted covalently on {CN\rm x} nanotubes by nitroxide-mediated radical polymerization, Chem. Commun. 42, 5349 (2005)

    Google Scholar 

  • B. Fragneaud, K. Masenelli-Varlot, A. {Gonz\'alez}-Montiel, M. Terrones, \mbox{J.-Y.} Cavaill\'e: Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using {N}-doped carbon nanotubes, Chem. Phys. Lett. 444, 1 (2007)

    Google Scholar 

  • D. M. Guldi, M. Marcaccio, D. Paolucci, F. Paolucci, M. Tagmatarchis, D. Tasis, E. Vasquez, M. Prato: Angew. Chem. Int. Ed. 42, 4206 (2003)

    Google Scholar 

  • K. Jiang, L. S. Schadler, R. W. Siegel, X. J. Zhang, H. F. Zhang, M. Terrones: Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, J. Mater. Chem. 14, 37 (2004)

    Google Scholar 

  • K. Jiang, A. Eitan, L. S. Schadler, P. M. Ajayan, R. W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones: Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes, Nano Lett. 3, 275 (2003)

    Google Scholar 

  • A. Zamudio, A. L. Elías, J. A. Rodríguez-Manzo, F. LÏŒpez-Urías, G. Rodríguez-Gattorno, F. Lupo, M. Rühle, D. J. Smith, H. Terrones, D. Díaz, M. Terrones: Efficient anchoring of silver nanoparticles on {N}-doped carbon nanotubes, Small 2, 346 (2005)

    Google Scholar 

  • X. LeprÏŒ, Y. {Vega-Cant\'u}, F. J. Rodr\'iguez-Mac\'ias, Y. Bando, D. Golberg, M. Terrones: Production and characterization of co-axial nanotube junctions and networks of {CNx/CNT}, Nano Letters 7, 2220 (2007)

    Google Scholar 

  • J. L. Carrero-Sánchez, A. L. Elías, R. Mancilla, G. Arellín, H. Terrones, J. P. Laclette, M. Terrones: Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen, Nano Lett. 6, 1609 (2006)

    Google Scholar 

  • D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, T. R. Webb: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicol. Sci. 77, 117 (2004)

    Google Scholar 

  • A. L. Elias, J. Carrero-Sánchez, H. Terrones, M. Endo, J. Laclette, M. Terrones: Comparative viability studies of pure carbon and nitrogen-doped multi walled carbon nanotube with amoeba cells: From amoebicidal to biocompatible structures, Small 3, 1723 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Terrones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Terrones, M., Filho, A.G.S., Rao, A.M. (2007). Doped Carbon Nanotubes: Synthesis, Characterization and Applications. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_17

Download citation

Publish with us

Policies and ethics