Advertisement

Carbon-Nanotube Optoelectronics

  • Phaedon Avouris
  • Marcus Freitag
  • Vasili Perebeinos
Part of the Topics in Applied Physics book series (TAP, volume 111)

Abstract

Semiconducting single-walled carbon nanotubes are direct-gap materials thatprovide ideal systems for the study of photophysics in one-dimension. Whiletheir excited states involve strongly bound 1D excitons, their single atomiclayer structure makes their optical properties especially sensitive to theirenvironment and external fields, thus allowing for their controlled modification. Inthis chapter we review the properties of the excited states of nanotubes,the mechanisms of their production and detection, focusing particularly onelectrically-induced excitation by ambipolar electron-hole recombination and impactexcitation by hot carriers. Radiative decay of photo-excited and electron-excited(electroluminescence) emission as well as the non-radiative decay to free carriersleading to photoconductivity are discussed. The influence of external electricfields and of environmental interactions on excited nanotubes is considered.Finally, the possible technological uses of carbon nanotubes as nanometer scalelight sources and photocurrent and photovoltage detectors are discussed.

Keywords

Gate Voltage Schottky Barrier Optical Phonon Radiative Lifetime Spectral Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Mintmire, B. I. Dunlap, C. T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631 (1992) CrossRefGoogle Scholar
  2. X. Blase, L. X. Benedict, E. L. Shirley, S. G. Louie: Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. 72, 1878 (1994) CrossRefGoogle Scholar
  3. M. S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon fibers based on {C}60 and their symmetry, Phys. Rev. B 45, 6234 (1992) CrossRefGoogle Scholar
  4. N. Hamada, S. Sawada, A. Oshiyama: New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579 (1992) CrossRefGoogle Scholar
  5. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, 2204 (1992) CrossRefGoogle Scholar
  6. T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn 66, 1066 (1997) CrossRefGoogle Scholar
  7. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Excitonic effects and optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 93, 077402 (2004) CrossRefGoogle Scholar
  8. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes, Appl. Phys. A-Mater. 78, 1129 (2004) CrossRefGoogle Scholar
  9. V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004) CrossRefGoogle Scholar
  10. E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004) CrossRefGoogle Scholar
  11. T. G. Pedersen: Variational approach to excitons in carbon nanotubes, Phys. Rev. B 67, 073401 (2003) CrossRefGoogle Scholar
  12. C. L. Kane, E. J. Mele: Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett. 90, 207401 (2003) CrossRefGoogle Scholar
  13. H. Zhao, S. Mazumdar: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 93, 157402 (2004) CrossRefGoogle Scholar
  14. C. L. Kane, E. J. Mele: Electron interactions and scaling relations for optical excitations in carbon nanotubes, Phys. Rev. Lett. 93, 197402 (2004) CrossRefGoogle Scholar
  15. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005) CrossRefGoogle Scholar
  16. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402R (2005) CrossRefGoogle Scholar
  17. X. Qiu, M. Freitag, V. Perebeinos, P. Avouris: Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states, Nano Lett. 5, 749 (2005) CrossRefGoogle Scholar
  18. F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, M. A. Pimenta: Direct experimental evidence of exciton–phonon bound states in carbon nanotubes, Phys. Rev. Lett. 95, 247401 (2005) CrossRefGoogle Scholar
  19. M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, G. Rumbles: Analysis of photoluminescence from solubilized single-walled carbon nanotubes, Phys. Rev. B 71, 115426 (2005) CrossRefGoogle Scholar
  20. S. G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H. B. Ribeiro, A. Jorio, M. A. Pimenta, G. G. Samsonidze, A. P. Santos, M. Zheng, G. B. Onoa, E. D. Semke, G. Dresselhaus, M. S. Dresselhaus: Phonon-assisted excitonic recombination channels observed in {DNA}-wrapped carbon nanotubes using photoluminescence spectroscopy, Phys. Rev. Lett. 94, 127402 (2005) CrossRefGoogle Scholar
  21. H. Htoon, M. J. O'Connell, S. K. Doorn, V. I. Klimov: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: The role of phonon-assisted transitions, Phys. Rev. Lett. 94, 127403 (2005) CrossRefGoogle Scholar
  22. Y. Miyauchi, S. Maruyama: Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes, Phys. Rev. B. 74, 035415 (2006) CrossRefGoogle Scholar
  23. V. Perebeinos, J. Tersoff, P. Avouris: Effect of exciton–phonon coupling in the calculated optical absorption of carbon nanotubes, Phys. Rev. Lett. 94, 027402 (2005) CrossRefGoogle Scholar
  24. H. Haug, S. W. Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, London 2005) Google Scholar
  25. P. Avouris, J. Chen, M. Freitag, V. Perebeinos, J. C. Tsang: Carbon nanotube optoelectronics, Phys. Stat. Sol. B 243, 3197 (2006) CrossRefGoogle Scholar
  26. G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz, L. E. Brus: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314 (2005) CrossRefGoogle Scholar
  27. V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495 (2005) CrossRefGoogle Scholar
  28. C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, S. G. Louie: Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes, Phys. Rev. Lett. 95, 247402 (2005) CrossRefGoogle Scholar
  29. T. Ando: Effects of valley mixing and exchange on excitons in carbon nanotubes with {A}haronov-{B}ohm flux, J. Phys. Soc. Jpn. 75, 024707 (2006) CrossRefGoogle Scholar
  30. E. Chang, D. Prezzi, A. Ruini, E. Molinari: URL: cond-matt/0603085 Dark excitons in carbon nanotubes Google Scholar
  31. Y. Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, G. R. Fleming: Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, J. Chem. Phys. 120, 3368 (2004) CrossRefGoogle Scholar
  32. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes, Phys. Rev. Lett. 92, 177401 (2004) CrossRefGoogle Scholar
  33. A. Hagen, G. Moos, V. Talalaev, J. W. Tomm, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A 78, 1137 (2004) CrossRefGoogle Scholar
  34. J. Lefebvre, D. G. Austing, J. Bond, P. Finnie: Photoluminescence imaging of suspended single-walled carbon nanotubes, Nano Lett. 6, 1603 (2006) CrossRefGoogle Scholar
  35. H. Htoon, P. J. Cox, V. I. Klimov: Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy, Phys. Rev. Lett. 93, 187402 (2004) CrossRefGoogle Scholar
  36. J. Lefebvre, P. Finnie, Y. Homma: Temperature-dependent photoluminescence from single-walled carbon nanotubes, Phys. Rev. B 70, 045419 (2004) CrossRefGoogle Scholar
  37. A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005) CrossRefGoogle Scholar
  38. J. Shaver, J. Kono, O. Portugall, V. Krstic, G. L. J. A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking, Nano Lett. 7, 1851 (2007) CrossRefGoogle Scholar
  39. V. Perebeinos, J. Tersoff, P. Avouris: Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005) CrossRefGoogle Scholar
  40. Y. Toyozawa: Prog. Theor. Phys. 25, 59 (1964) Google Scholar
  41. J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, P. Avouris: Doping and phonon renormalization in carbon nanotubes, Nature Nano 2, 725–730 (2007) CrossRefGoogle Scholar
  42. V. Perebeinos, P. Avouris: Impact excitation by hot carriers in carbon nanotubes, Phys. Rev. B 74, 121410R (2006) CrossRefGoogle Scholar
  43. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai: Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 95, 155505 (2005) CrossRefGoogle Scholar
  44. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Electron transport and hot phonons in carbon nanotubes, Phys. Rev. Lett. 95, 236802 (2005) CrossRefGoogle Scholar
  45. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, P. Avouris: Bright infrared emission from electrically induced excitons in carbon nanotubes, Science 310, 1171 (2005) CrossRefGoogle Scholar
  46. F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, T. F. Heinz: Observation of rapid {A}uger recombination in optically excited semiconducting carbon nanotubes, Phys. Rev. B 70, 241403(R) (2004) CrossRefGoogle Scholar
  47. J. Kono, G. N. Ostojic, S. Zaric, M. S. Strano, V. C. Moore, J. Shaver, R. H. Hauge, R. E. Smalley: Ultra-fast optical spectroscopy of micelle-suspended single-walled carbon nanotubes, Appl. Phys. A 78, 1093 (2004) CrossRefGoogle Scholar
  48. Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, G. R. Fleming: Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation, Phys. Rev. Lett. 94, 157402 (2005) CrossRefGoogle Scholar
  49. W. Z. Franz: Influence of an electrical field on an optical absorption edge, Naturforsch. 13A, 484 (1958) Google Scholar
  50. L. V. Keldysh: Influence of a strong electric field on the optical characteristics of nonconducting crystals, Zh. Eksp. Teor. Fiz. 34, 1138 (1958) Google Scholar
  51. L. V. Keldysh: Influence of a strong electric field on the optical characteristics of nonconducting crystals, Sov. Phys. JETP 7 (1958) Google Scholar
  52. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus: Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect, Phys. Rev. Lett. 53, 2173 (1984) CrossRefGoogle Scholar
  53. D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink: Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined {F}ranz–{K}eldysh effect, Phys. Rev. B 33, 6976 (1986) CrossRefGoogle Scholar
  54. V. Perebeinos, P. Avouris: Exciton ionization, {F}ranz–{K}eldysh, and stark effects in carbon nanotubes, Nano Lett. 7, 609 (2007) CrossRefGoogle Scholar
  55. H. Zhao, S. Mazumdar: Elucidation of the electronic structure of semiconducting single-walled carbon nanotubes by electroabsorption spectroscopy, Phys. Rev. Lett. 98, 166805 (2007) CrossRefGoogle Scholar
  56. H. A. Bethe, E. E. Salpeter: in Quantum Mechanics of One- and Two- Electron Atoms (Academic, New York 1957) CrossRefGoogle Scholar
  57. C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani, G. Cerullo: Intersubband exciton relaxation dynamics in single-walled carbon nanotubes, Phys. Rev. Lett. 94, 207401 (2005) CrossRefGoogle Scholar
  58. P. Avouris: Carbon nanotube electronics, Phys. World 20, 40 (2007) Google Scholar
  59. S. J. Tans, A. R. M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49 (1998) CrossRefGoogle Scholar
  60. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447 (1998) CrossRefGoogle Scholar
  61. F. Leonard, J. Tersoff: Novel length scales in nanotube devices, Phys. Rev. Lett. 83, 5174 (1999) CrossRefGoogle Scholar
  62. M. S. Fuhrer, J. Nyg{å}rd, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen: Crossed nanotube junctions, Science 288, 494 (2000) CrossRefGoogle Scholar
  63. M. Freitag, M. Radosavljevic, Y. Zhou, A. T. Johnson: Controlled creation of a carbon nanotube diode by a scanned gate, Appl. Phys. Lett. 79, 3326 (2001) CrossRefGoogle Scholar
  64. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, P. Avouris: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes, Phys. Rev. Lett. 87, 256805 (2001) CrossRefGoogle Scholar
  65. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as schottky barrier transistors, Phys. Rev. Lett. 89, 106801 (2002) CrossRefGoogle Scholar
  66. T. Nakanishi, A. Bachtold, C. Dekker: Transport through the interface between a semiconducting carbon nanotube and a metal electrode, Phys. Rev. B 66, 073307 (2002) CrossRefGoogle Scholar
  67. M. Radosavljevic, S. Heinze, J. Tersoff, P. Avouris: Drain voltage scaling in carbon nanotube transistors, Appl. Phys. Lett. 83, 2435 (2003) CrossRefGoogle Scholar
  68. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, P. Avouris: Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett. 89, 126801 (2002) CrossRefGoogle Scholar
  69. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Appl. Phys. Lett. 80, 3817 (2002) CrossRefGoogle Scholar
  70. P. Avouis, A. Afzali, J. Appenzeller, J. Chen, M. Freitag, C. Klinke, Y.-M. Lin, J. C. Tsang: Carbon nanotube electronics and optoelectronics, IEDM Tech. Digest pp. 525–529 (2004) Google Scholar
  71. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube fet, Science 300, 783 (2003) CrossRefGoogle Scholar
  72. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, P. Avouris: Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067 (2003) CrossRefGoogle Scholar
  73. X. Cui, M. Freitag, R. Martel, L. Brus, P. Avouris: Controlling energy-level alignments at carbon nanotube/{A}u contacts, Nano Lett. 3, 783 (2003) CrossRefGoogle Scholar
  74. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, H. Dai: Molecular photodesorption from single-walled carbon nanotubes, Appl. Phys. Lett. 79, 2258 (2001) CrossRefGoogle Scholar
  75. M. E. Itkis, F. Borondics, A. Yu, R. C. Haddon: Bolometric infrared photoresponse of suspended single-walled carbon nanotube films, Science 312, 413 (2006) CrossRefGoogle Scholar
  76. J. U. Lee: Photovoltaic effect in ideal carbon nanotube diodes, Appl. Phys. Lett. 87, 073101 (2005) CrossRefGoogle Scholar
  77. J. Guo, M. A. Alam, Y. Yoon: Theoretical investigation on photoconductivity of single intrinsic carbon nanotubes, Appl. Phys. Lett. 88, 133111 (2006) CrossRefGoogle Scholar
  78. J. C. Tsang, M. Freitag: Private communications Google Scholar
  79. K. Balasubramanian, Y. Fan, M. Burghard, K. Kern, M. Friedrich, U. Wannek, A. Mews: Photoelectronic transport imaging of individual semiconducting carbon nanotubes, Appl. Phys. Lett. 84, 2400 (2004) CrossRefGoogle Scholar
  80. M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, J. M. Kikkawa: Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes, Phys. Rev. Lett. 93, 037404 (2004) CrossRefGoogle Scholar
  81. P. T. Araujo, S. K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M. A. Pimenta, A. Jorio: Third and fourth optical transitions in semiconducting carbon nanotubes, Phys. Rev. Lett. 98, 067401 (2007) CrossRefGoogle Scholar
  82. J. U. Lee, P. P. Gipp, C. M. Heller: Carbon nanotube p-n junction diodes, Appl. Phys. Lett. 85, 145 (2004) CrossRefGoogle Scholar
  83. J. Appenzeller, Y. M. Lin, J. Knoch, P. Avouris: Band-to-band tunneling in carbon nanotube field-effect transistors, Phys. Rev. Lett. 93, 196805 (2004) CrossRefGoogle Scholar
  84. K. Bosnik, N. Gabor, P. McEuen: Transport in carbon nanotube p-i-n diodes, Appl. Phys. Lett. 89, 163121 (2006) CrossRefGoogle Scholar
  85. M. Freitag, J. C. Tsang, A. Bol, D. Yuan, J. Liu, P. Avouris: Imaging of the schottky barriers and charge depletion in carbon nanotube transistors, Nano Lett. 7, 2037 (2007) CrossRefGoogle Scholar
  86. K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, A. Mews: Photocurrent imaging of charge transport barriers in carbon nanotube devices, Nano Lett. 5, 507 (2005) CrossRefGoogle Scholar
  87. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, P. Avouris: Hot carrier electroluminescence from a single carbon nanotube, Nano Lett. 4, 1063 (2004) CrossRefGoogle Scholar
  88. M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, P. Avouris: Mobile ambipolar domain in carbon-nanotube infrared emitters, Phys. Rev. Lett. 93, 076803 (2004) CrossRefGoogle Scholar
  89. J. Tersoff, M. Freitag, J. C. Tsang, P. Avouris: Device modeling of long-channel nanotube electro-optical emitter, Appl. Phys. Lett. 86, 263108 (2005) CrossRefGoogle Scholar
  90. J. Guo, M. A. Alam: Carrier transport and light-spot movement in carbon-nanotube infrared emitters, Appl. Phys. Lett. 86, 023105 (2005) CrossRefGoogle Scholar
  91. M. Freitag, J. C. Tsang, J. Kirtley, A. Carlsen, J. Chen, A. Troeman, H. Hilgenkamp, P. Avouris: Electrically excited, localized infrared emission from single carbon nanotubes, Nano Lett. 6, 1425 (2006) CrossRefGoogle Scholar
  92. L. Marty, E. Adam, L. Albert, R. Doyon, D. Menard, R. Martel: Exciton formation and annihilation during 1{D} impact excitation of carbon nanotubes, Phys. Rev. Lett. 96, 136803 (2006) CrossRefGoogle Scholar
  93. M. S. Fuhrer, B. M. Kim, T. Dürkop, T. Brintlinger: High-mobility nanotube transistor memory, Nano Lett. 2, 755 (2002) CrossRefGoogle Scholar
  94. M. Radosavljevic, M. Freitag, K. V. Thadani, A. T. Johnson: Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors, Nano Lett. 2, 761 (2002) CrossRefGoogle Scholar
  95. D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, H. Dai: Electrically driven thermal light emission from individual single-walled carbon nanotubes, Nature Nanotech. 2, 33 (2007) CrossRefGoogle Scholar
  96. L. Novotny, B. Hecht: Principles of Nano-Optics (Cambridge University Press, Cambridge 2006) CrossRefGoogle Scholar
  97. P. Avouris, J. Appenzeller, R. Martel, S. J. Wind: Carbon nanotube electronics, Proc. IEEE 91, 1772 (2003) CrossRefGoogle Scholar
  98. H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, Y. Lu: Electrical transport properties and field-effect transistors of carbon nanotubes, NANO 1, 1 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Phaedon Avouris
    • 1
  • Marcus Freitag
    • 1
  • Vasili Perebeinos
    • 1
  1. 1.T. J. WatsonResearch CenterIBM Research DivisionYorktown HeightsUSA

Personalised recommendations