Skip to main content

Efficiently Downdating, Composing and Splitting Singular Value Decompositions Preserving the Mean Information

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

Abstract

Three methods for the efficient downdating, composition and splitting of low rank singular value decompositions are proposed. They are formulated in a closed form, considering the mean information and providing exact results. Although these methods are presented in the context of computer vision, they can be used in any field forgetting information, combining different eigenspaces in one or ignoring particular dimensions of the column space of the data. Application examples on face subspace learning and latent semantic analysis are given and performance results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirby, M.: Geometric Data Analysis: An empirical Approach to Dimensionality Reduction and the Study of Patterns. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  2. Sirovich, L., Kirby, M.: A low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 4, 524–529 (1987)

    Article  Google Scholar 

  3. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  4. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  5. Loève, M.: Probability Theory. Van Nostrand, Princeton (1955)

    MATH  Google Scholar 

  6. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

  8. Murakami, H., Kumar, V.: Efficient calculation of primary images from a set of images. Trans. on PAMI 4(5), 511–515 (1982)

    Google Scholar 

  9. Chandrasekaran, S., Manjunath, B., Wang, Y., Winkeler, J., Zhang, H.: An Eigenspace Update Algorithm for Image Analysis. Graphical Models and Image Processing 59(5), 321–332 (1997)

    Article  Google Scholar 

  10. Gu, M., Eisenstat, S.T.: A stable and fast algorithm for updating the singular value decomposition. Tech. report YALEU/DCS/RR-966. Department of Computer Science, Yale University, New Haven (1993)

    Google Scholar 

  11. Hall, P.M., Marshall, A.D., Martin, R.R.: Merging and Splitting Eigenspace Models. Trans. on PAMI 22(9), 1042–1049 (2000)

    Google Scholar 

  12. Hall, P.M., Marshall, A.D., Martin, R.R.: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing 20(13–14), 1009–1016 (2002)

    Article  Google Scholar 

  13. Brand, M.: Incremental Singular Value Decomposition of Uncertain Data with Missing Values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: Proc. of ICCV’03, vol. 2, pp. 1494–1501 (2003)

    Google Scholar 

  15. Melenchón, J., Meler, L., Iriondo, I.: On-the-fly training. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, pp. 146–154. Springer, Heidelberg (2004)

    Google Scholar 

  16. Lim, J., Ross, D., Lin, R.S., Yang, M.H.: Incremental Learning for Visual Tracking. In: Advances in Neural Information Processing Systems, vol. 18, pp. 793–800 (2005)

    Google Scholar 

  17. Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to images. Trans. on Image Processing 9(8), 1371–1374 (2000)

    Article  MATH  Google Scholar 

  18. Stewart, G.W.: On the early history of the singular value decomposition. Society for Industrial and Applied Mathematics Review 35, 551–566 (1993)

    MATH  Google Scholar 

  19. Cobo, G., Sevillano, X., Alías, F., Socoró, J.C.: Técnicas de representación de textos para clasificación no supervisada de documentos. Procesamiento del Lenguaje Natural 37, 329–336 (2006)

    Google Scholar 

  20. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Melenchón, J., Martínez, E. (2007). Efficiently Downdating, Composing and Splitting Singular Value Decompositions Preserving the Mean Information. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics