Abstract
Three methods for the efficient downdating, composition and splitting of low rank singular value decompositions are proposed. They are formulated in a closed form, considering the mean information and providing exact results. Although these methods are presented in the context of computer vision, they can be used in any field forgetting information, combining different eigenspaces in one or ignoring particular dimensions of the column space of the data. Application examples on face subspace learning and latent semantic analysis are given and performance results are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kirby, M.: Geometric Data Analysis: An empirical Approach to Dimensionality Reduction and the Study of Patterns. John Wiley and Sons, New York (2001)
Sirovich, L., Kirby, M.: A low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 4, 524–529 (1987)
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Loève, M.: Probability Theory. Van Nostrand, Princeton (1955)
Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)
Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)
Murakami, H., Kumar, V.: Efficient calculation of primary images from a set of images. Trans. on PAMI 4(5), 511–515 (1982)
Chandrasekaran, S., Manjunath, B., Wang, Y., Winkeler, J., Zhang, H.: An Eigenspace Update Algorithm for Image Analysis. Graphical Models and Image Processing 59(5), 321–332 (1997)
Gu, M., Eisenstat, S.T.: A stable and fast algorithm for updating the singular value decomposition. Tech. report YALEU/DCS/RR-966. Department of Computer Science, Yale University, New Haven (1993)
Hall, P.M., Marshall, A.D., Martin, R.R.: Merging and Splitting Eigenspace Models. Trans. on PAMI 22(9), 1042–1049 (2000)
Hall, P.M., Marshall, A.D., Martin, R.R.: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing 20(13–14), 1009–1016 (2002)
Brand, M.: Incremental Singular Value Decomposition of Uncertain Data with Missing Values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)
Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: Proc. of ICCV’03, vol. 2, pp. 1494–1501 (2003)
Melenchón, J., Meler, L., Iriondo, I.: On-the-fly training. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, pp. 146–154. Springer, Heidelberg (2004)
Lim, J., Ross, D., Lin, R.S., Yang, M.H.: Incremental Learning for Visual Tracking. In: Advances in Neural Information Processing Systems, vol. 18, pp. 793–800 (2005)
Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to images. Trans. on Image Processing 9(8), 1371–1374 (2000)
Stewart, G.W.: On the early history of the singular value decomposition. Society for Industrial and Applied Mathematics Review 35, 551–566 (1993)
Cobo, G., Sevillano, X., AlÃas, F., Socoró, J.C.: Técnicas de representación de textos para clasificación no supervisada de documentos. Procesamiento del Lenguaje Natural 37, 329–336 (2006)
Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Melenchón, J., MartÃnez, E. (2007). Efficiently Downdating, Composing and Splitting Singular Value Decompositions Preserving the Mean Information. In: MartÃ, J., BenedÃ, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-72849-8_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72848-1
Online ISBN: 978-3-540-72849-8
eBook Packages: Computer ScienceComputer Science (R0)