Skip to main content

New Neighborhood Based Classification Rules for Metric Spaces and Their Use in Ensemble Classification

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4477))

Included in the following conference series:

Abstract

The k-nearest-neighbor rule is a well known pattern recognition technique with very good results in a great variety of real classification tasks. Based on the neighborhood concept, several classification rules have been proposed to reduce the error rate of the k-nearest-neighbor rule (or its time requirements). In this work, two new geometrical neighborhoods are defined and the classification rules derived from them are used in several real data classification tasks. Also, some voting ensembles of classifiers based on these new rules have been tested and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  2. Bohm, C., Krebs, F.: High performance data mining using the nearest neighbor join. In: Second IEEE International Conference on Data Mining, pp. 43–50 (2002)

    Google Scholar 

  3. Dasarathy, B.V.: Data mining tasks and methods: Classification: nearest-neighbor approaches. In: Handbook of data mining and knowledge discovery, pp. 288–298. Oxford University Press, Oxford (2002)

    Google Scholar 

  4. Katayama, N., Satoh, S.: Distinctiveness-Sensitive Nearest-Neighbor search for efficient similarity retrieval of multimedia information. In: Proceedings of the 17th International Conference on Data Engineering, pp. 493–502 (2001)

    Google Scholar 

  5. Sanchez, J.S., Pla, F., Ferri, F.J.: On the use of neighbourhood-based non-parametric classifiers. Pattern Recognition Letters 18, 1179–1186 (1997)

    Article  Google Scholar 

  6. Moreno-Seco, F., Micó, L., Oncina, J.: Extending fast nearest neighbour search algorithms for approximate k-NN classification. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 589–597. Springer, Heidelberg (2003)

    Google Scholar 

  7. Jamonczyk, J.W., Toussaint, G.T.: Relative neighbourhood graphs and their relatives. Proceedings IEEE 80, 1502–1517 (1992)

    Article  Google Scholar 

  8. Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of the Association for Computing Machinery 21(1), 168–173 (1974)

    MATH  MathSciNet  Google Scholar 

  9. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)

    MATH  Google Scholar 

  10. Selfridge, O.: Pandemonium: a paradigm for learning in mechanisation of thought processes. In: Proceedings of a Symposium Held at the National Physical Laboratory, pp. 513–526 (1958)

    Google Scholar 

  11. Van Erp, M., Vuurpijl, L.G., Schomaker, L.R.B.: An overview and comparison of voting methods for pattern recognition. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition, pp. 195–200 (2002)

    Google Scholar 

  12. de Borda, J.-C.: Memoire sur les Elections au Scrutin. Histoire de l’Academie Royale des Sciences, Paris (1781)

    Google Scholar 

  13. Duin, R.: A theoretical study of six classifier fusion strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)

    Article  Google Scholar 

  14. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)

    Article  Google Scholar 

  15. Granum, E., Thomason, M.G., Gregor, J.: On the use of automatically inferred Markov networks for chromosome analysis. In: Lundsteen, C., Piper, J. (eds.) Automation of Cytogenetics, pp. 233–251. Springer, Heidelberg (1989)

    Google Scholar 

  16. Granum, E., Thomason, M.G.: Automatically inferred Markov network models for classification of chromosomal band pattern structures. Cytometry 11, 26–39 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mazón, JN., Micó, L., Moreno-Seco, F. (2007). New Neighborhood Based Classification Rules for Metric Spaces and Their Use in Ensemble Classification. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72847-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72846-7

  • Online ISBN: 978-3-540-72847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics