Skip to main content

Histogram Based Segmentation Using Wasserstein Distances

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

In this paper, we propose a new nonparametric region-based active contour model for clutter image segmentation. To quantify the similarity between two clutter regions, we propose to compare their respective histograms using the Wasserstein distance. Our first segmentation model is based on minimizing the Wasserstein distance between the object (resp. background) histogram and the object (resp. background) reference histogram, together with a geometric regularization term that penalizes complicated region boundaries. The minimization is achieved by computing the gradient of the level set formulation for the energy. Our second model does not require reference histograms and assumes that the image can be partitioned into two regions in each of which the local histograms are similar everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., et al.: Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients? SIAM Appl. Math. 1(2), 2128–2145 (2005)

    MathSciNet  Google Scholar 

  2. Broadhurst, R.E.: Statistical estimation of histogram variation for texture classification. In: Texture 2005: Proceedings of the 4th Internation Workshop on Texture Analysis and Synthesis, pp. 25–30 (2005)

    Google Scholar 

  3. Jehan-Besson, S., et al.: Shape Gradients for Histogram Segmentation Using Active Contours. In: Proc. Int. Conf. Computer Vision, Nice, France, pp. 408–415 (2003)

    Google Scholar 

  4. Caselles, V., et al.: Shape preserving local histogram modification. IEEE Trans. Image Proc. 8, 220–230 (1999)

    Article  Google Scholar 

  5. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  6. Chartrand, R., et al.: A Gradient Descent Solution to the Monge-Kantorovich Problem.

    Google Scholar 

  7. Herbulot, A., et al.: Shape Gradient for Image Segmentation using Information Theory. In: ICASSP, vol. 3, May 2004, pp. 21–24 (2004)

    Google Scholar 

  8. Haker, S., Zhu, L., Tannnenbaum, A.: Optimal Mass Transport for Registration and Warping. International Journal of Computer Vision 60(3), 225–240 (2004)

    Article  Google Scholar 

  9. Kantorovich, L.V.: On the translocation of masses. Dokl. Akad. Nauk SSSR 37, 199–201 (1942)

    Google Scholar 

  10. Kim, J., et al.: Nonparametric methods for image segmentation using information theory and curve evolution. In: ICIP, vol. 3, pp. 797–800 (2002)

    Google Scholar 

  11. Monge, G.: Mémoire sur la théorie des déblais at des remblais. In: Histoire de l’Académie Royale des Sciences de Paris, pp. 666–704 (1781)

    Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Osher, S., Sethian, J.A.: Fronts propagation with curvature-dependent speed: Algorithms based on Hamilton-Jacobi Formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rachev, S., Rüschendorf, L.: Mass transportation problems. vol. I: Theory, vol. II: Applications. Probability and its applications. Springer, New York (1998)

    Google Scholar 

  15. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: IEEE International Conference on Computer Vision, Bombay, India, January 1998, pp. 59–66 (1998)

    Google Scholar 

  16. Sapiro, G., Caselles, V.: Histogram modification via differential equations. Journal of Differential Equations 135(2), 238–268 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tu, Z., Zhu, S.: Image segmentation by data-driven Markov Chain Monte Carlo. IEEE transactions on pattern analysis and machine intelligenc 24(5) (2002)

    Google Scholar 

  18. Yezzi Jr., A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: Int. Conf. on Computer Vision, pp. 898–903 (1999)

    Google Scholar 

  19. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chan, T., Esedoglu, S., Ni, K. (2007). Histogram Based Segmentation Using Wasserstein Distances. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics